論文の概要: Latent space analysis and generalization to out-of-distribution data
- arxiv url: http://arxiv.org/abs/2511.15010v1
- Date: Wed, 19 Nov 2025 01:23:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.582668
- Title: Latent space analysis and generalization to out-of-distribution data
- Title(参考訳): 潜在空間解析とアウト・オブ・ディストリビューションデータへの一般化
- Authors: Katie Rainey, Erin Hausmann, Donald Waagen, David Gray, Donald Hulsey,
- Abstract要約: 潜在空間OOD検出とモデルの分類精度の関連について検討する。
我々は,OOD検出がモデル性能のプロキシ尺度として使用できないことを実証的に実証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the relationships between data points in the latent decision space derived by the deep learning system is critical to evaluating and interpreting the performance of the system on real world data. Detecting \textit{out-of-distribution} (OOD) data for deep learning systems continues to be an active research topic. We investigate the connection between latent space OOD detection and classification accuracy of the model. Using open source simulated and measured Synthetic Aperture RADAR (SAR) datasets, we empirically demonstrate that the OOD detection cannot be used as a proxy measure for model performance. We hope to inspire additional research into the geometric properties of the latent space that may yield future insights into deep learning robustness and generalizability.
- Abstract(参考訳): ディープラーニングシステムによって導かれる潜在決定空間におけるデータポイント間の関係を理解することは,実世界のデータ上でのシステムの性能評価と解釈に不可欠である。
ディープラーニングシステムのための‘textit{out-of-distribution}(OOD)データの検出は、現在も活発な研究トピックである。
潜在空間OOD検出とモデルの分類精度の関連について検討する。
SAR(Synthetic Aperture RADAR)データセットを用いて,OOD検出がモデル性能のプロキシ尺度として使用できないことを実証的に実証した。
我々は、深層学習の堅牢性と一般化可能性に関する将来の洞察をもたらす可能性のある潜在空間の幾何学的性質に関するさらなる研究を刺激したいと考えている。
関連論文リスト
- A Novel Shape-Aware Topological Representation for GPR Data with DNN Integration [3.367318729981566]
地中貫入レーダ(GPR)は地下探査に広く用いられている非破壊試験(NDT)技術である。
本研究では,地下施設,特にパイプラインの発見を促進する新しい枠組みを提案する。
本研究では, 入力データの構造的特徴を増幅し, 埋設物の幾何学的特徴に対するモデルの応答性を向上する新しい形状対応トポロジ表現を提案する。
論文 参考訳(メタデータ) (2025-05-26T10:43:34Z) - TopoFR: A Closer Look at Topology Alignment on Face Recognition [58.45515807380505]
PTSAと呼ばれるトポロジカル構造アライメント戦略とSDEという硬質試料マイニング戦略を利用する新しいFRモデルであるTopoFRを提案する。
PTSAは永続ホモロジーを用いて入力空間と潜在空間の位相構造を整列し、構造情報を効果的に保存し、FRモデルの一般化性能を向上させる。
一般的な顔のベンチマーク実験の結果は、最先端の手法よりもTopoFRの方が優れていることを示している。
論文 参考訳(メタデータ) (2024-10-14T14:58:30Z) - Enhancing OOD Detection Using Latent Diffusion [3.4899193297791054]
Out-of-Distribution(OOD)検出は、現実のシナリオにおけるマシンラーニングモデルの信頼性の高いデプロイに不可欠である。
近年の研究では、安定拡散のような生成モデルを用いて、画素空間の外部値データを合成する方法が検討されている。
我々は,潜伏空間内でOOD学習データを生成する新しいフレームワークであるOutlier-Aware Learning (OAL)を提案する。
論文 参考訳(メタデータ) (2024-06-24T11:01:43Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
セマンティックセグメンテーションモデルの現実的信頼性を総合的に評価するために、合成データを具体的に生成する方法を初めて示す。
この合成データは、事前訓練されたセグメンタの堅牢性を評価するために使用される。
セグメンタのキャリブレーションとOOD検出能力を向上するために,我々のアプローチをどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2023-12-14T18:56:07Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
本稿では,長い尾を持つOOD検出の課題に対処する。
主な困難は、尾クラスに属するサンプルとOODデータを区別することである。
本稿では,(1)複数の禁制クラスを導入して分布内クラス空間を拡大すること,(2)コンテキストリッチなOODデータに画像をオーバーレイすることでコンテキスト限定のテールクラスを拡大すること,の2つの簡単な考え方を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:47:13Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Igeood: An Information Geometry Approach to Out-of-Distribution
Detection [35.04325145919005]
Igeoodは, オフ・オブ・ディストリビューション(OOD)サンプルを効果的に検出する手法である。
Igeoodは任意のトレーニング済みニューラルネットワークに適用され、機械学習モデルにさまざまなアクセス権を持つ。
Igeoodは、さまざまなネットワークアーキテクチャやデータセットにおいて、競合する最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-03-15T11:26:35Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。