論文の概要: MAIF: Enforcing AI Trust and Provenance with an Artifact-Centric Agentic Paradigm
- arxiv url: http://arxiv.org/abs/2511.15097v1
- Date: Wed, 19 Nov 2025 04:10:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.627128
- Title: MAIF: Enforcing AI Trust and Provenance with an Artifact-Centric Agentic Paradigm
- Title(参考訳): MAIF:AI信頼と証明をアーティファクト中心のエージェントパラダイムで実現する
- Authors: Vineeth Sai Narajala, Manish Bhatt, Idan Habler, Ronald F. Del Rosario,
- Abstract要約: 現在のAIシステムは、監査証跡、証明追跡、EU AI Actのような新たな規則で要求される説明可能性に欠ける不透明なデータ構造で運用されている。
動作は一時的なタスクではなく、永続的で検証可能なデータアーティファクトによって駆動される、アーティファクト中心のAIエージェントパラダイムを提案する。
プロダクション対応実装では、超高速ストリーミング(2,720.7MB/s)、最適化されたビデオ処理(1,342MB/s)、エンタープライズレベルのセキュリティが示されている。
- 参考スコア(独自算出の注目度): 0.5896098673075335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The AI trustworthiness crisis threatens to derail the artificial intelligence revolution, with regulatory barriers, security vulnerabilities, and accountability gaps preventing deployment in critical domains. Current AI systems operate on opaque data structures that lack the audit trails, provenance tracking, or explainability required by emerging regulations like the EU AI Act. We propose an artifact-centric AI agent paradigm where behavior is driven by persistent, verifiable data artifacts rather than ephemeral tasks, solving the trustworthiness problem at the data architecture level. Central to this approach is the Multimodal Artifact File Format (MAIF), an AI-native container embedding semantic representations, cryptographic provenance, and granular access controls. MAIF transforms data from passive storage into active trust enforcement, making every AI operation inherently auditable. Our production-ready implementation demonstrates ultra-high-speed streaming (2,720.7 MB/s), optimized video processing (1,342 MB/s), and enterprise-grade security. Novel algorithms for cross-modal attention, semantic compression, and cryptographic binding achieve up to 225 compression while maintaining semantic fidelity. Advanced security features include stream-level access control, real-time tamper detection, and behavioral anomaly analysis with minimal overhead. This approach directly addresses the regulatory, security, and accountability challenges preventing AI deployment in sensitive domains, offering a viable path toward trustworthy AI systems at scale.
- Abstract(参考訳): AIの信頼性危機は、規制障壁、セキュリティの脆弱性、重要なドメインへのデプロイを妨げる説明責任のギャップなど、人工知能革命を損なう恐れがある。
現在のAIシステムは、監査証跡、証明追跡、EU AI Actのような新たな規則で要求される説明可能性に欠ける不透明なデータ構造で運用されている。
本稿では,データアーキテクチャのレベルでの信頼性問題を解くことを目的として,AIエージェントのパラダイムを提案する。
このアプローチの中心にあるのは、セマンティック表現、暗号証明、粒度のアクセス制御を組み込んだAIネイティブコンテナである、Multimodal Artifact File Format(MAIF)である。
MAIFはデータを受動的ストレージからアクティブな信頼執行に変換し、すべてのAI操作を本質的に監査可能にする。
我々のプロダクション対応実装では、超高速ストリーミング(2,720.7MB/s)、最適化されたビデオ処理(1,342MB/s)、エンタープライズレベルのセキュリティが実証されている。
クロスモーダルアテンション、セマンティック圧縮、および暗号バインディングのための新しいアルゴリズムは、セマンティック忠実性を維持しながら最大225の圧縮を実現する。
高度なセキュリティ機能には、ストリームレベルのアクセス制御、リアルタイムタンパ検出、オーバーヘッドを最小限にした行動異常解析などがある。
このアプローチは、センシティブなドメインにおけるAIのデプロイメントを防止するための、規制、セキュリティ、説明責任といった課題に直接対処する。
関連論文リスト
- AI Bill of Materials and Beyond: Systematizing Security Assurance through the AI Risk Scanning (AIRS) Framework [31.261980405052938]
人工知能(AI)システムの保証は、ソフトウェアサプライチェーンセキュリティ、敵機械学習、ガバナンスドキュメントに分散している。
本稿では,AI保証の運用を目的とした脅威モデルに基づくエビデンス発生フレームワークであるAI Risk Scanning(AIRS)フレームワークを紹介する。
論文 参考訳(メタデータ) (2025-11-16T16:10:38Z) - OS-Sentinel: Towards Safety-Enhanced Mobile GUI Agents via Hybrid Validation in Realistic Workflows [77.95511352806261]
VLM(Vision-Language Models)を利用したコンピュータ利用エージェントは、モバイルプラットフォームのようなデジタル環境を操作する上で、人間のような能力を実証している。
我々は,明示的なシステムレベルの違反を検出するための形式検証器と,文脈的リスクとエージェント行動を評価するコンテキスト判断器を組み合わせた,新しいハイブリッド安全検出フレームワークOS-Sentinelを提案する。
論文 参考訳(メタデータ) (2025-10-28T13:22:39Z) - Enterprise AI Must Enforce Participant-Aware Access Control [9.68210477539956]
大規模言語モデル(LLM)は、複数のユーザと対話し、センシティブな内部データに基づいてトレーニングあるいは微調整されるエンタープライズ環境に、ますます多くデプロイされている。
敵は、現在の微調整アーキテクチャやRAGアーキテクチャを利用して、アクセス制御の強制力の欠如を活用して機密情報を漏洩することができることを示す。
本稿では, LLM による学習, 検索, 生成に使用されるコンテンツは, インセンティブに関わるユーザに対して明示的に認証される,という原則に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2025-09-18T04:30:49Z) - Co-Investigator AI: The Rise of Agentic AI for Smarter, Trustworthy AML Compliance Narratives [2.7295959384567356]
Co-Investigator AIは、SAR(Suspicious Activity Reports)の作成に最適化されたエージェントフレームワークであり、従来の方法よりも大幅に高速で精度が高い。
我々は、SARの草案作成を効率化し、物語を規制上の期待と一致させ、コンプライアンスチームが高次の分析作業に集中できるようにする能力を示します。
論文 参考訳(メタデータ) (2025-09-10T08:16:04Z) - Rethinking Data Protection in the (Generative) Artificial Intelligence Era [138.07763415496288]
現代の(生産的な)AIモデルやシステムに生じる多様な保護ニーズを捉える4段階の分類法を提案する。
当社のフレームワークは、データユーティリティとコントロールのトレードオフに関する構造化された理解を提供し、AIパイプライン全体にわたっています。
論文 参考訳(メタデータ) (2025-07-03T02:45:51Z) - DRIFT: Dynamic Rule-Based Defense with Injection Isolation for Securing LLM Agents [52.92354372596197]
大規模言語モデル(LLM)は、強力な推論と計画能力のため、エージェントシステムの中心となってきています。
この相互作用は、外部ソースからの悪意のある入力がエージェントの振る舞いを誤解させる可能性がある、インジェクション攻撃のリスクも引き起こす。
本稿では,信頼に値するエージェントシステムのための動的ルールベースの分離フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-13T05:01:09Z) - AI-Powered Anomaly Detection with Blockchain for Real-Time Security and Reliability in Autonomous Vehicles [1.1797787239802762]
我々は、リアルタイム異常検出のための人工知能(AI)のパワーとブロックチェーン技術を組み合わせて、悪意のあるアクティビティを検出して防止する新しいフレームワークを開発する。
このフレームワークでは、センサデータと異常アラートをブロックチェーン台帳にセキュアに格納する分散プラットフォームを使用して、データの不正性と信頼性を保証している。
これにより、AVシステムは、サイバースペースとハードウェアコンポーネントの両方の障害からの攻撃に対してより耐性がある。
論文 参考訳(メタデータ) (2025-05-10T12:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。