論文の概要: AI-Powered Anomaly Detection with Blockchain for Real-Time Security and Reliability in Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2505.06632v1
- Date: Sat, 10 May 2025 12:53:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-13 20:21:48.949584
- Title: AI-Powered Anomaly Detection with Blockchain for Real-Time Security and Reliability in Autonomous Vehicles
- Title(参考訳): 自律走行車におけるリアルタイムセキュリティと信頼性のためのブロックチェーンを用いたAI駆動異常検出
- Authors: Rathin Chandra Shit, Sharmila Subudhi,
- Abstract要約: 我々は、リアルタイム異常検出のための人工知能(AI)のパワーとブロックチェーン技術を組み合わせて、悪意のあるアクティビティを検出して防止する新しいフレームワークを開発する。
このフレームワークでは、センサデータと異常アラートをブロックチェーン台帳にセキュアに格納する分散プラットフォームを使用して、データの不正性と信頼性を保証している。
これにより、AVシステムは、サイバースペースとハードウェアコンポーネントの両方の障害からの攻撃に対してより耐性がある。
- 参考スコア(独自算出の注目度): 1.1797787239802762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Vehicles (AV) proliferation brings important and pressing security and reliability issues that must be dealt with to guarantee public safety and help their widespread adoption. The contribution of the proposed research is towards achieving more secure, reliable, and trustworthy autonomous transportation system by providing more capabilities for anomaly detection, data provenance, and real-time response in safety critical AV deployments. In this research, we develop a new framework that combines the power of Artificial Intelligence (AI) for real-time anomaly detection with blockchain technology to detect and prevent any malicious activity including sensor failures in AVs. Through Long Short-Term Memory (LSTM) networks, our approach continually monitors associated multi-sensor data streams to detect anomalous patterns that may represent cyberattacks as well as hardware malfunctions. Further, this framework employs a decentralized platform for securely storing sensor data and anomaly alerts in a blockchain ledger for data incorruptibility and authenticity, while offering transparent forensic features. Moreover, immediate automated response mechanisms are deployed using smart contracts when anomalies are found. This makes the AV system more resilient to attacks from both cyberspace and hardware component failure. Besides, we identify potential challenges of scalability in handling high frequency sensor data, computational constraint in resource constrained environment, and of distributed data storage in terms of privacy.
- Abstract(参考訳): 自律走行車(AV)の増殖は、公共の安全を保証し、その普及を支援するために対処しなければならないセキュリティと信頼性の問題を重要かつ押し付けている。
提案した研究の貢献は、安全で信頼性が高く、信頼性の高い自律輸送システムの実現に向け、安全に重要なAV配備において、異常検出、データプロファイランス、リアルタイム応答のさらなる機能を提供することである。
本研究では、リアルタイム異常検出のための人工知能(AI)のパワーとブロックチェーン技術を組み合わせて、AVのセンサー障害を含む悪意ある活動を検出し防止する新しいフレームワークを開発する。
LSTM(Long Short-Term Memory)ネットワークを通じて,関連するマルチセンサデータストリームを継続的に監視し,サイバー攻撃やハードウェアの故障を示す可能性のある異常パターンを検出する。
さらに、このフレームワークでは、センサデータと異常アラートをブロックチェーン台帳にセキュアに保存して、データの不正性と信頼性を保証しつつ、透過的な法医学的機能を提供する分散型プラットフォームを採用している。
さらに、異常が見つかった際には、スマートコントラクトを使用して即時自動応答機構がデプロイされる。
これにより、AVシステムは、サイバースペースとハードウェアコンポーネントの両方の障害からの攻撃に対してより耐性がある。
さらに、高周波センサデータ処理におけるスケーラビリティの潜在的な課題、リソース制約環境における計算制約、プライバシの観点からの分散データストレージについて検討する。
関連論文リスト
- Explainable Machine Learning for Cyberattack Identification from Traffic Flows [5.834276858232939]
トラフィックネットワークを用いて,半現実的な環境下でのサイバー攻撃をシミュレートし,破壊パターンを解析する。
深層学習に基づく異常検出システムを開発し、最も長い停止時間と全ジャム距離が妥協信号の重要な指標であることを実証した。
この作業は、AI駆動のトラフィックセキュリティを強化し、スマートトランスポートシステムの検出精度と信頼性の両方を改善します。
論文 参考訳(メタデータ) (2025-05-02T17:34:14Z) - Towards Robust Stability Prediction in Smart Grids: GAN-based Approach under Data Constraints and Adversarial Challenges [53.2306792009435]
本稿では,安定したデータのみを用いて,スマートグリッドの不安定性を検出する新しいフレームワークを提案する。
ジェネレータはGAN(Generative Adversarial Network)に依存しており、ジェネレータは不安定なデータを生成するために訓練される。
我々の解は、実世界の安定と不安定なサンプルからなるデータセットでテストされ、格子安定性の予測において最大97.5%、敵攻撃の検出において最大98.9%の精度を達成する。
論文 参考訳(メタデータ) (2025-01-27T20:48:25Z) - VMGuard: Reputation-Based Incentive Mechanism for Poisoning Attack Detection in Vehicular Metaverse [52.57251742991769]
車両メタバースガード(VMGuard)は、車両メタバースシステムをデータ中毒攻撃から保護する。
VMGuardは、参加するSIoTデバイスの信頼性を評価するために、評判に基づくインセンティブメカニズムを実装している。
当社のシステムは,従来は誤分類されていた信頼性の高いSIoTデバイスが,今後の市場ラウンドへの参加を禁止していないことを保証します。
論文 参考訳(メタデータ) (2024-12-05T17:08:20Z) - IDU-Detector: A Synergistic Framework for Robust Masquerader Attack Detection [3.3821216642235608]
デジタル時代には、ユーザは個人データを企業データベースに格納し、データセキュリティを企業管理の中心とする。
大規模な攻撃面を考えると、アセットは弱い認証、脆弱性、マルウェアといった課題に直面している。
IDU-Detectorを導入し、侵入検知システム(IDS)とユーザ・エンティティ・ビヘイビア・アナリティクス(UEBA)を統合した。
この統合は、不正アクセスを監視し、システムギャップをブリッジし、継続的な監視を保証し、脅威識別を強化する。
論文 参考訳(メタデータ) (2024-11-09T13:03:29Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection [4.718295605140562]
本稿では,3段階のディープラーニング異常検出に基づくネットワーク侵入攻撃検出フレームワークを提案する。
このフレームワークは、教師なし(K平均クラスタリング)、半教師付き(GANomaly)、および教師付き学習(CNN)アルゴリズムの統合を含む。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2022-12-02T04:40:54Z) - MMRNet: Improving Reliability for Multimodal Object Detection and
Segmentation for Bin Picking via Multimodal Redundancy [68.7563053122698]
マルチモーダル冗長性(MMRNet)を用いた信頼度の高いオブジェクト検出・分割システムを提案する。
これは、マルチモーダル冗長の概念を導入し、デプロイ中のセンサ障害問題に対処する最初のシステムである。
システム全体の出力信頼性と不確実性を測定するために,すべてのモダリティからの出力を利用する新しいラベルフリーマルチモーダル整合性(MC)スコアを提案する。
論文 参考訳(メタデータ) (2022-10-19T19:15:07Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
コネクテッド・自動運転車(CAV)の安全運転状況の確保は、引き続き広く懸念されている。
アルゴリズム対応型intElligent Safe-Driven AssessmentmenT(BEST)の新たなフレームワークを提案し、スマートで信頼性の高いアプローチを提供します。
論文 参考訳(メタデータ) (2021-04-09T19:08:34Z) - Multi-Source Data Fusion for Cyberattack Detection in Power Systems [1.8914160585516038]
複数のデータソースからの情報を融合することで,サイバーインシデントの発生を識別し,偽陽性を低減できることが示されている。
我々は、サイバー物理電力システムテストベッドでIDSを訓練するためのマルチソースデータ融合を行う。
提案するデータ融合アプリケーションを用いて偽データとコマンドインジェクションに基づく中間攻撃を推測する。
論文 参考訳(メタデータ) (2021-01-18T06:34:45Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
モノのインターネット(IoT)デバイスには、攻撃者によって悪用される可能性のある多くの脆弱性がある傾向がある。
異常検出のような教師なしの技術は、これらのデバイスをプラグ・アンド・プロテクトで保護するために使用することができる。
Raspberry Pi48台からなる分散IoTシミュレーションプラットフォームを提案する。
論文 参考訳(メタデータ) (2020-06-18T14:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。