論文の概要: Generating Natural-Language Surgical Feedback: From Structured Representation to Domain-Grounded Evaluation
- arxiv url: http://arxiv.org/abs/2511.15159v1
- Date: Wed, 19 Nov 2025 06:19:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.657603
- Title: Generating Natural-Language Surgical Feedback: From Structured Representation to Domain-Grounded Evaluation
- Title(参考訳): 自然言語外科的フィードバックの生成:構造的表現から領域内評価へ
- Authors: Firdavs Nasriddinov, Rafal Kocielnik, Anima Anandkumar, Andrew J. Hung,
- Abstract要約: 外科的トレーナーからの高品質なフィードバックは,訓練者のパフォーマンス向上と長期的スキル獲得に不可欠である。
本稿では,実際の訓練者-訓練者間の文書から外科的行動オントロジーを学習する構造対応パイプラインを提案する。
- 参考スコア(独自算出の注目度): 66.7752700084159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-quality intraoperative feedback from a surgical trainer is pivotal for improving trainee performance and long-term skill acquisition. Automating natural, trainer-style feedback promises timely, accessible, and consistent guidance at scale but requires models that understand clinically relevant representations. We present a structure-aware pipeline that learns a surgical action ontology from real trainer-to-trainee transcripts (33 surgeries) and uses it to condition feedback generation. We contribute by (1) mining Instrument-Action-Target (IAT) triplets from real-world feedback text and clustering surface forms into normalized categories, (2) fine-tuning a video-to-IAT model that leverages the surgical procedure and task contexts as well as fine-grained temporal instrument motion, and (3) demonstrating how to effectively use IAT triplet representations to guide GPT-4o in generating clinically grounded, trainer-style feedback. We show that, on Task 1: Video-to-IAT recognition, our context injection and temporal tracking deliver consistent AUC gains (Instrument: 0.67 to 0.74; Action: 0.60 to 0.63; Tissue: 0.74 to 0.79). For Task 2: feedback text generation (rated on a 1-5 fidelity rubric where 1 = opposite/unsafe, 3 = admissible, and 5 = perfect match to a human trainer), GPT-4o from video alone scores 2.17, while IAT conditioning reaches 2.44 (+12.4%), doubling the share of admissible generations with score >= 3 from 21% to 42%. Traditional text-similarity metrics also improve: word error rate decreases by 15-31% and ROUGE (phrase/substring overlap) increases by 9-64%. Grounding generation in explicit IAT structure improves fidelity and yields clinician-verifiable rationales, supporting auditable use in surgical training.
- Abstract(参考訳): 外科的トレーナーからの高品質な術中フィードバックは,訓練者のパフォーマンス向上と長期的スキル獲得に重要である。
自然でトレーナ的なフィードバックの自動化は、タイムリーで、アクセス可能で、一貫したガイダンスを大規模に約束するが、臨床的に関連する表現を理解するモデルが必要である。
本稿では,実際の訓練者-訓練者間の文書(33例)から外科的行動オントロジーを学習し,それを用いて条件フィードバックを生成する構造認識パイプラインを提案する。
本研究は,(1)実世界のフィードバックテキストおよびクラスタリングサーフェスフォームを正常化カテゴリにマイニングすること,(2)外科手術やタスクコンテキストを生かしたビデオ・ツー・IATモデルを微調整すること,(3)臨床現場の訓練者スタイルのフィードバックを誘導するために,IATのトリプルト表現を効果的に活用する方法を示すことによる。
Task 1: Video-to-IAT認識では、コンテキストインジェクションと時間トラッキングが一貫したAUCゲイン(機器:0.67から0.74、アクション:0.60から0.63、組織:0.74から0.79)を提供する。
タスク2では、フィードバックテキスト生成(1 = 逆/不安全、3 = 許容可能、5 = 人間のトレーナーと完全一致)、ビデオ単独でのGPT-4oは2.17点、IAT条件付けは2.44点(+12.4%)、許容世代の割合は21%から42%に倍増する。
単語エラー率は15~31%減少し、ROUGE(フレーズ/サブストリングオーバーラップ)は9~64%上昇する。
明示的なIAT構造の接地生成は、忠実性を改善し、臨床が検証可能な有理性を与え、手術訓練における聴覚的使用を支援する。
関連論文リスト
- Explainable Anatomy-Guided AI for Prostate MRI: Foundation Models and In Silico Clinical Trials for Virtual Biopsy-based Risk Assessment [3.5408411348831232]
MRIによる前立腺癌(PCa)のリスク階層化のための,完全に自動化された,解剖学的に指導されたディープラーニングパイプラインを提案する。
パイプラインは、前立腺とそのゾーンを軸方向のT2強調MRI上にセグメント化するためのnnU-Netモジュール、オプションの解剖学的先行と臨床データで3Dパッチに微調整されたDiceedPT Swin Transformer基盤モデルに基づく分類モジュール、決定駆動画像領域をローカライズする反ファクトなヒートマップを生成するVAE-GANフレームワークの3つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2025-05-23T14:40:09Z) - Automating Feedback Analysis in Surgical Training: Detection, Categorization, and Assessment [65.70317151363204]
本研究は,非構造化現実記録からの外科的対話を再構築するための最初の枠組みを紹介する。
外科訓練では,ライブ手術中に訓練者に提供する形式的言語フィードバックは,安全性の確保,行動の即時修正,長期的スキル獲得の促進に不可欠である。
本フレームワークは,音声活動の検出,話者ダイアリゼーション,自動音声認識と,幻覚を除去する新たな拡張機能を統合する。
論文 参考訳(メタデータ) (2024-12-01T10:35:12Z) - Multi-Modal Self-Supervised Learning for Surgical Feedback Effectiveness Assessment [66.6041949490137]
そこで本研究では,音声による音声入力とそれに対応する手術映像からの情報を統合して,フィードバックの有効性を予測する手法を提案する。
以上の結果から,手書きフィードバックと手術映像の両方が,訓練者の行動変化を個別に予測できることがわかった。
本研究は,手術フィードバックの自動評価を推進するためのマルチモーダル学習の可能性を示すものである。
論文 参考訳(メタデータ) (2024-11-17T00:13:00Z) - Evaluating the Application of ChatGPT in Outpatient Triage Guidance: A Comparative Study [11.37622565068147]
医療における人工知能の統合は、運用効率と健康結果を高めるための変革的な可能性を示している。
ChatGPTのような大規模言語モデル(LLM)は、医療的意思決定をサポートする能力を示している。
本研究の目的は,ChatGPTが提示する応答の整合性を評価することである。
論文 参考訳(メタデータ) (2024-04-27T04:12:02Z) - Deep Multimodal Fusion for Surgical Feedback Classification [70.53297887843802]
外科的フィードバックの5カテゴリー分類を臨床的に検証した。
次に,テキスト,音声,ビデオモダリティの入力から,これらの5つのカテゴリの外科的フィードバックを分類するために,多ラベル機械学習モデルを開発した。
我々の研究の最終的な目標は、リアルタイムな文脈的外科的フィードバックのアノテーションを大規模に自動化することである。
論文 参考訳(メタデータ) (2023-12-06T01:59:47Z) - Self-distilled Masked Attention guided masked image modeling with noise Regularized Teacher (SMART) for medical image analysis [6.712251433139412]
注意誘導型マスク画像モデリング(MIM)を用いた事前学習型視覚変換器(ViT)は、自然画像解析において下流の精度を向上することを示した。
我々は,MIMの選択的マスキングを誘導するために,雑音の多い運動量更新教師を組み合わせた共蒸留スウィントランスを開発した。
論文 参考訳(メタデータ) (2023-10-02T13:53:55Z) - INSTRUCTSCORE: Explainable Text Generation Evaluation with Finegrained
Feedback [80.57617091714448]
テキスト生成のための説明可能な評価指標であるInstructScoreを提案する。
LLaMAに基づいてテキスト評価基準を微調整し、生成されたテキストのスコアと人間の可読性診断レポートを生成する。
論文 参考訳(メタデータ) (2023-05-23T17:27:22Z) - Improving Large Language Models for Clinical Named Entity Recognition
via Prompt Engineering [20.534197056683695]
本研究は,臨床名付きエンティティ認識(NER)タスクにおける GPT-3.5 と GPT-4 の能力を定量化する。
我々は,ベースラインプロンプト,アノテーションガイドラインに基づくプロンプト,エラー解析に基づく命令,アノテーション付きサンプルを含むタスク固有のプロンプトフレームワークを開発した。
それぞれのプロンプトの有効性を評価し,BioClinicalBERTと比較した。
論文 参考訳(メタデータ) (2023-03-29T02:46:18Z) - Scenario Aware Speech Recognition: Advancements for Apollo Fearless
Steps & CHiME-4 Corpora [70.46867541361982]
本稿では、TRILLと呼ばれる三重項損失に基づく自己監督基準で訓練された一般的な非意味的音声表現について考察する。
我々は、Fearless Stepsの開発と評価のために、+5.42%と+3.18%の相対的なWER改善を観察した。
論文 参考訳(メタデータ) (2021-09-23T00:43:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。