論文の概要: Particle Monte Carlo methods for Lattice Field Theory
- arxiv url: http://arxiv.org/abs/2511.15196v1
- Date: Wed, 19 Nov 2025 07:31:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.684112
- Title: Particle Monte Carlo methods for Lattice Field Theory
- Title(参考訳): 格子場理論のための粒子モンテカルロ法
- Authors: David Yallup,
- Abstract要約: 我々は,GPU加速粒子法,Sequential Monte Carlo (SMC) とNested sample が,最先端のニューラルサンプリングと一致する,あるいは性能の優れた古典的ベースラインを提供することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional multimodal sampling problems from lattice field theory (LFT) have become important benchmarks for machine learning assisted sampling methods. We show that GPU-accelerated particle methods, Sequential Monte Carlo (SMC) and nested sampling, provide a strong classical baseline that matches or outperforms state-of-the-art neural samplers in sample quality and wall-clock time on standard scalar field theory benchmarks, while also estimating the partition function. Using only a single data-driven covariance for tuning, these methods achieve competitive performance without problem-specific structure, raising the bar for when learned proposals justify their training cost.
- Abstract(参考訳): 格子場理論(LFT)による高次元マルチモーダルサンプリング問題は,機械学習支援サンプリング手法の重要なベンチマークとなっている。
我々は,GPU加速粒子法であるSequential Monte Carlo (SMC) とNested sample が,標準スカラー場理論ベンチマーク上での標本品質と壁面時間における最先端のニューラルサンプリングとを一致または比較し,分割関数を推定する,強力な古典的ベースラインを提供することを示した。
チューニングに1つのデータ駆動の共分散だけを用いることで、これらの手法は問題固有の構造を使わずに競争性能を達成し、学習した提案がトレーニングコストを正当化する際の限界を高くする。
関連論文リスト
- SCORENF: Score-based Normalizing Flows for Sampling Unnormalized distributions [5.204468049641428]
正規化フローアーキテクチャ上に構築されたスコアベースの学習フレームワークであるScoreNFを提案する。
ScoreNFは訓練アンサンブルが小さい場合でも高い性能を維持していることを示す。
また,モード被覆とモード崩壊の挙動を評価する手法を提案する。
論文 参考訳(メタデータ) (2025-10-24T10:43:19Z) - Reinforced sequential Monte Carlo for amortised sampling [49.92678178064033]
我々は、最大エントロピー強化学習(MaxEnt RL)により訓練されたシーケンシャルモンテカルロ(SMC)とニューラルシーケンシャルサンプリングとの接続を述べる。
本稿では,提案関数とツイスト関数の安定な連成訓練手法と,トレーニング信号のばらつきを低減するための適応重み付け方式について述べる。
論文 参考訳(メタデータ) (2025-10-13T17:59:11Z) - Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling [70.8832906871441]
我々は、モデルを再訓練することなく、所望の報酬に向けて世代を操る方法を研究する。
従来の手法では、通常は1つの認知軌道内でサンプリングやフィルタを行い、軌道レベルの改善なしに報酬をステップバイステップで最適化する。
本稿では,拡散言語モデル(PG-DLM)の粒子ギブスサンプリングについて紹介する。
論文 参考訳(メタデータ) (2025-07-11T08:00:47Z) - Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts [64.34482582690927]
事前学習したスコアベースモデルから得られた熱処理, 幾何平均, 製品分布の配列から, 効率的かつ原理的に抽出する方法を提供する。
本稿では,サンプリング品質を向上させるために,推論時間スケーリングを利用する逐次モンテカルロ(SMC)再サンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-03-04T17:46:51Z) - Learning to sample fibers for goodness-of-fit testing [0.0]
離散指数族モデルに対する完全適合性テストを構築することの問題点を考察する。
この問題をマルコフ決定プロセスに変換し、サンプリングのための「よい動きを学ぶための強化学習アプローチ」を示す。
提案アルゴリズムは,評価可能な収束性を持つアクタ・クリティカル・サンプリング方式に基づいている。
論文 参考訳(メタデータ) (2024-05-22T19:33:58Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Learning a Restricted Boltzmann Machine using biased Monte Carlo
sampling [0.6554326244334867]
マルコフ・チェイン・モンテカルロによる平衡分布のサンプリングはバイアスサンプリング法により劇的に加速できることを示す。
また、このサンプリング手法を用いて、トレーニング中のログライクな勾配の計算を改善することも示している。
論文 参考訳(メタデータ) (2022-06-02T21:29:01Z) - Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC [83.48593305367523]
ハイブリッドモンテカルロ(Hybrid Monte Carlo)は、複素連続分布からサンプリングする強力なマルコフ連鎖モンテカルロ法である。
本稿では,SurVAEフローを用いたモンテカルロ法の拡張に基づく新しい手法を提案する。
本稿では,統計学,計算物理学,機械学習など,様々な分野におけるアルゴリズムの有効性を実証し,代替アルゴリズムと比較した改良点を考察する。
論文 参考訳(メタデータ) (2021-02-04T02:21:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。