論文の概要: IndicGEC: Powerful Models, or a Measurement Mirage?
- arxiv url: http://arxiv.org/abs/2511.15260v1
- Date: Wed, 19 Nov 2025 09:24:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.725573
- Title: IndicGEC: Powerful Models, or a Measurement Mirage?
- Title(参考訳): IndicGEC:強力なモデルか、それとも測定ミラージュか?
- Authors: Sowmya Vajjala,
- Abstract要約: 本稿では,BHASHA-Task 1 の文法的誤り訂正タスクにおける TeamNRC の参加結果について報告する。
異なる大きさの言語モデルのゼロ/ファウショットプロンプトに着目した我々のアプローチは,それぞれ83.78点,84.31点のGLEUスコアで,テルグ語で4位,ヒンディー語で2位を達成した。
- 参考スコア(独自算出の注目度): 5.117030416610516
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we report the results of the TeamNRC's participation in the BHASHA-Task 1 Grammatical Error Correction shared task https://github.com/BHASHA-Workshop/IndicGEC2025/ for 5 Indian languages. Our approach, focusing on zero/few-shot prompting of language models of varying sizes (4B to large proprietary models) achieved a Rank 4 in Telugu and Rank 2 in Hindi with GLEU scores of 83.78 and 84.31 respectively. In this paper, we extend the experiments to the other three languages of the shared task - Tamil, Malayalam and Bangla, and take a closer look at the data quality and evaluation metric used. Our results primarily highlight the potential of small language models, and summarize the concerns related to creating good quality datasets and appropriate metrics for this task that are suitable for Indian language scripts.
- Abstract(参考訳): 本稿では,BHASHA-Task 1 の文法的誤り訂正における TeamNRC の参加状況について報告する。
提案手法は,異なるサイズ (4Bから大規模プロプライエタリモデル) の言語モデルのゼロ/ファウショットに焦点をあてたもので,それぞれ83.78点,84.31点のGLEUスコアを持つテルグ語で4位,ヒンディー語で2位を達成した。
本稿では、実験を共有タスクの他の3つの言語(タミル語、マラヤラム語、バングラ語)に拡張し、使用したデータ品質と評価基準について詳しく検討する。
本研究は,小言語モデルの可能性を強調し,高品質なデータセットの作成に関する懸念点と,インド語のスクリプトに適した適切な指標について要約した。
関連論文リスト
- HinTel-AlignBench: A Framework and Benchmark for Hindi-Telugu with English-Aligned Samples [3.3715057550177145]
インド語の視覚言語モデル(VLM)を評価し,それを英語のパフォーマンスと比較するためのスケーラブルなフレームワークを提案する。
このフレームワークを使ってHinTel-AlignBenchを生成する。HindiとTeluguのさまざまなソースから英語対応のサンプルを描画するベンチマークだ。
ヒンディー語では平均8.3ポイント、テルグ語では5.5ポイントである。
論文 参考訳(メタデータ) (2025-11-19T07:11:00Z) - Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
論文 参考訳(メタデータ) (2024-08-01T04:56:13Z) - Paramanu: A Family of Novel Efficient Generative Foundation Language Models for Indian Languages [3.9018931027384056]
インド語のための新しい言語モデル(LM)のファミリーである「Paramanu」を提示する。
10の言語(アッサム語、バングラ語、ヒンディー語、コンカニ語、マイティシ語、マラティ語、オディア語、サンスクリット語、タミル語、テルグ語)を5文字でカバーしている。
モデルは、コンテキストサイズが1024の1つのGPUで事前トレーニングされており、サイズは13.29万(M)から367.5Mまで様々である。
論文 参考訳(メタデータ) (2024-01-31T17:58:10Z) - Cross-Lingual NER for Financial Transaction Data in Low-Resource
Languages [70.25418443146435]
半構造化テキストデータにおける言語間名前認識のための効率的なモデリングフレームワークを提案する。
我々は2つの独立したSMSデータセットを英語とアラビア語で使用し、それぞれが半構造化された銀行取引情報を持っている。
わずか30のラベル付きサンプルにアクセスすることで、我々のモデルは、英語からアラビア語までの商人、金額、その他の分野の認識を一般化することができる。
論文 参考訳(メタデータ) (2023-07-16T00:45:42Z) - Summarizing Indian Languages using Multilingual Transformers based
Models [13.062351454646912]
本研究では、これらの多言語モデルが、原文およびターゲットテキストとしてインド語を持つデータセット上でどのように機能するかを検討する。
IndicBARTおよびmT5モデルを用いて実験を行い, ROUGE-1, ROUGE-2, ROUGE-3, ROUGE-4のスコアを評価指標として報告する。
論文 参考訳(メタデータ) (2023-03-29T13:05:17Z) - Crosslingual Generalization through Multitask Finetuning [80.8822603322471]
マルチタスク誘導ファインタニング(MTF)は、大きな言語モデルがゼロショット設定で新しいタスクに一般化するのに役立つことが示されている。
MTFを事前訓練された多言語BLOOMおよびmT5モデルファミリーに適用し、BLOOMZおよびmT0と呼ばれる微調整された変種を生成する。
英語のプロンプトを用いた英語タスクにおける多言語多言語モデルの微調整により、非英語言語へのタスク一般化が可能となる。
論文 参考訳(メタデータ) (2022-11-03T13:19:32Z) - IndicSUPERB: A Speech Processing Universal Performance Benchmark for
Indian languages [16.121708272597154]
インド12言語における音声認識のためのIndicSUPERBベンチマークをリリースする。
一般的に使用されているベースラインベンチマークとともに、さまざまな自己教師付きモデルをトレーニングし、評価する。
言語固有の微調整モデルはほとんどのタスクのベースラインよりも正確であることを示す。
論文 参考訳(メタデータ) (2022-08-24T20:14:52Z) - Few-shot Learning with Multilingual Language Models [66.49496434282564]
多様な言語群をカバーするバランスの取れたコーパス上で,多言語の自動回帰言語モデルを訓練する。
私たちの最大のモデルは、20以上の代表言語で数ショットの学習において、新しい最先端の技術を定めています。
本稿では,モデルがどこで成功し,失敗するかを詳細に分析し,特に言語間の文脈内学習を可能にすることを示す。
論文 参考訳(メタデータ) (2021-12-20T16:52:35Z) - Harnessing Cross-lingual Features to Improve Cognate Detection for
Low-resource Languages [50.82410844837726]
言語間単語埋め込みを用いた14言語間のコニャートの検出を実証する。
インドの12言語からなる挑戦的データセットを用いて,コニャート検出手法の評価を行った。
我々は,コグネート検出のためのFスコアで最大18%の改善点を観察した。
論文 参考訳(メタデータ) (2021-12-16T11:17:58Z) - CL-NERIL: A Cross-Lingual Model for NER in Indian Languages [0.5926203312586108]
本稿では,インドの言語を対象としたNERのエンドツーエンドフレームワークを提案する。
我々は、英語とインド語の並列コーパスと英語のNERデータセットを利用する。
Hindi、Bengali、Gujaratiの3言語に対して手動でアノテートしたテストセットを提示する。
論文 参考訳(メタデータ) (2021-11-23T12:09:15Z) - Comparison of Interactive Knowledge Base Spelling Correction Models for
Low-Resource Languages [81.90356787324481]
低リソース言語に対する正規化の推進は、パターンの予測が難しいため、難しい作業である。
この研究は、ターゲット言語データに様々な量を持つニューラルモデルとキャラクタ言語モデルの比較を示す。
我々の利用シナリオは、ほぼゼロのトレーニング例によるインタラクティブな修正であり、より多くのデータが収集されるにつれてモデルを改善する。
論文 参考訳(メタデータ) (2020-10-20T17:31:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。