論文の概要: Graph Query Networks for Object Detection with Automotive Radar
- arxiv url: http://arxiv.org/abs/2511.15271v1
- Date: Wed, 19 Nov 2025 09:36:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.729871
- Title: Graph Query Networks for Object Detection with Automotive Radar
- Title(参考訳): 自動車レーダを用いた物体検出のためのグラフクエリネットワーク
- Authors: Loveneet Saini, Hasan Tercan, Tobias Meisen,
- Abstract要約: 本稿では,レーダによって知覚されるオブジェクトをグラフとしてモデル化する注目ベースのフレームワークであるGraph Query Networks (GQN)を紹介する。
NuScenesデータセットでは、GQNは、最強の先行レーダ法よりも8.2%の利得を含む、相対的なmAPを最大53%改善している。
- 参考スコア(独自算出の注目度): 15.25428401059991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection with 3D radar is essential for 360-degree automotive perception, but radar's long wavelengths produce sparse and irregular reflections that challenge traditional grid and sequence-based convolutional and transformer detectors. This paper introduces Graph Query Networks (GQN), an attention-based framework that models objects sensed by radar as graphs, to extract individualized relational and contextual features. GQN employs a novel concept of graph queries to dynamically attend over the bird's-eye view (BEV) space, constructing object-specific graphs processed by two novel modules: EdgeFocus for relational reasoning and DeepContext Pooling for contextual aggregation. On the NuScenes dataset, GQN improves relative mAP by up to +53%, including a +8.2% gain over the strongest prior radar method, while reducing peak graph construction overhead by 80% with moderate FLOPs cost.
- Abstract(参考訳): 3Dレーダーによる物体検出は、360度自動車の認識には不可欠であるが、レーダーの長い波長は、従来のグリッドやシーケンスベースの畳み込み・変圧器検出器に挑戦するスパースで不規則な反射を生み出す。
本稿では,レーダによって知覚されるオブジェクトをグラフとしてモデル化する注目型フレームワークであるGraph Query Networks(GQN)を紹介する。
GQNは、鳥眼ビュー(BEV)空間を動的に参画するグラフクエリという新しい概念を採用し、2つの新しいモジュールによって処理されるオブジェクト固有のグラフを構築する。
NuScenesデータセットでは、GQNは相対的なmAPを最大53%改善し、最強のレーダ法よりも+8.2%向上し、ピークグラフ構築オーバーヘッドを適度なFLOPコストで80%削減した。
関連論文リスト
- GET-UP: GEomeTric-aware Depth Estimation with Radar Points UPsampling [7.90238039959534]
既存のアルゴリズムは3Dポイントを画像面に投影してレーダデータを処理し、画素レベルの特徴抽出を行う。
レーダデータから2次元情報と3次元情報を交換・集約するために,注目度の高いグラフニューラルネットワーク(GNN)を利用するGET-UPを提案する。
提案したGET-UPをnuScenesデータセット上でベンチマークし,従来最高のパフォーマンスモデルよりも15.3%,14.7%改善した。
論文 参考訳(メタデータ) (2024-09-02T14:15:09Z) - GraphRelate3D: Context-Dependent 3D Object Detection with Inter-Object Relationship Graphs [13.071451453118783]
グラフ生成器とグラフニューラルネットワーク(GNN)から構成されるオブジェクト関係モジュールを導入し、特定のパターンから空間情報を学習し、3次元オブジェクト検出を改善する。
提案手法は,KITTI検証セットにおけるPV-RCNNのベースラインを,軽度,中等度,難易度でそれぞれ0.82%,0.74%,0.58%改善する。
論文 参考訳(メタデータ) (2024-05-10T19:18:02Z) - Representation Learning on Heterophilic Graph with Directional
Neighborhood Attention [8.493802098034255]
Graph Attention Network(GAT)は、最も人気のあるGraph Neural Network(GNN)アーキテクチャの1つである。
GATは、長距離およびグローバルグラフ情報をキャプチャする能力に欠けており、いくつかのデータセットで不満足なパフォーマンスをもたらす。
本稿では,特徴に基づく注意と,グラフトポロジから抽出したグローバルな方向性情報を組み合わせるために,DGAT(Directional Graph Attention Network)を提案する。
論文 参考訳(メタデータ) (2024-03-03T10:59:16Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Graph Neural Network and Spatiotemporal Transformer Attention for 3D
Video Object Detection from Point Clouds [94.21415132135951]
複数のフレームにおける時間情報を利用して3次元物体を検出することを提案する。
我々は,一般的なアンカーベースおよびアンカーフリー検出器に基づくアルゴリズムを実装した。
論文 参考訳(メタデータ) (2022-07-26T05:16:28Z) - Improved Orientation Estimation and Detection with Hybrid Object
Detection Networks for Automotive Radar [1.53934570513443]
我々は,レーダに基づく物体検出ネットワークを改善するために,グリッドとポイントを併用した新しいハイブリッドアーキテクチャを提案する。
格子描画の前に、点の正確な相対位置を利用して、点ベースモデルが近傍の特徴を抽出できることが示される。
これは、次の畳み込み検出バックボーンに対して大きなメリットがある。
論文 参考訳(メタデータ) (2022-05-03T06:29:03Z) - MFGNet: Dynamic Modality-Aware Filter Generation for RGB-T Tracking [72.65494220685525]
可視データと熱データ間のメッセージ通信を促進するために,新しい動的モダリティ対応フィルタ生成モジュール(MFGNet)を提案する。
我々は、2つの独立ネットワークを持つ動的モダリティ対応フィルタを生成し、その可視フィルタとサーマルフィルタをそれぞれ、対応する入力特徴写像上で動的畳み込み演算を行う。
重閉塞,高速移動,外見による問題に対処するため,新たな方向認識型目標誘導型アテンション機構を活用することで,共同で局所的・グローバル検索を行うことを提案する。
論文 参考訳(メタデータ) (2021-07-22T03:10:51Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
シーングラフ生成(SGG)は、画像内のオブジェクトとそれらのペア関係を検出することを目的としている。
GPS-Netは、エッジ方向情報、ノード間の優先度の差、長期にわたる関係の分布という、SGGの3つの特性を網羅している。
GPS-Netは、VG、OI、VRDの3つの一般的なデータベース上での最先端のパフォーマンスを、さまざまな設定とメトリクスで大幅に向上させる。
論文 参考訳(メタデータ) (2020-03-29T07:22:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。