論文の概要: GraphRelate3D: Context-Dependent 3D Object Detection with Inter-Object Relationship Graphs
- arxiv url: http://arxiv.org/abs/2405.06782v1
- Date: Fri, 10 May 2024 19:18:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 20:05:32.597870
- Title: GraphRelate3D: Context-Dependent 3D Object Detection with Inter-Object Relationship Graphs
- Title(参考訳): GraphRelate3D:オブジェクト間関係グラフを用いたコンテキスト依存型3Dオブジェクト検出
- Authors: Mingyu Liu, Ekim Yurtsever, Marc Brede, Jun Meng, Walter Zimmer, Xingcheng Zhou, Bare Luka Zagar, Yuning Cui, Alois Knoll,
- Abstract要約: グラフ生成器とグラフニューラルネットワーク(GNN)から構成されるオブジェクト関係モジュールを導入し、特定のパターンから空間情報を学習し、3次元オブジェクト検出を改善する。
提案手法は,KITTI検証セットにおけるPV-RCNNのベースラインを,軽度,中等度,難易度でそれぞれ0.82%,0.74%,0.58%改善する。
- 参考スコア(独自算出の注目度): 13.071451453118783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and effective 3D object detection is critical for ensuring the driving safety of autonomous vehicles. Recently, state-of-the-art two-stage 3D object detectors have exhibited promising performance. However, these methods refine proposals individually, ignoring the rich contextual information in the object relationships between the neighbor proposals. In this study, we introduce an object relation module, consisting of a graph generator and a graph neural network (GNN), to learn the spatial information from certain patterns to improve 3D object detection. Specifically, we create an inter-object relationship graph based on proposals in a frame via the graph generator to connect each proposal with its neighbor proposals. Afterward, the GNN module extracts edge features from the generated graph and iteratively refines proposal features with the captured edge features. Ultimately, we leverage the refined features as input to the detection head to obtain detection results. Our approach improves upon the baseline PV-RCNN on the KITTI validation set for the car class across easy, moderate, and hard difficulty levels by 0.82%, 0.74%, and 0.58%, respectively. Additionally, our method outperforms the baseline by more than 1% under the moderate and hard levels BEV AP on the test server.
- Abstract(参考訳): 正確な3Dオブジェクト検出は、自動運転車の運転安全性を確保するために重要である。
近年,最先端の2段式3次元物体検出器は有望な性能を示した。
しかし、これらの手法は個々の提案を洗練させ、近隣の提案間のオブジェクト関係におけるリッチな文脈情報を無視する。
本研究では,グラフ生成器とグラフニューラルネットワーク(GNN)からなるオブジェクト関係モジュールを導入し,特定のパターンから空間情報を学習して3次元物体検出を改善する。
具体的には、グラフ生成器を介してフレーム内の提案に基づいてオブジェクト間関係グラフを作成し、各提案を隣の提案と接続する。
その後、GNNモジュールは生成されたグラフからエッジ特徴を抽出し、キャプチャされたエッジ特徴で提案特徴を反復的に洗練する。
最終的に、改良された特徴を検出ヘッドへの入力として利用し、検出結果を得る。
提案手法は,KITTI検証セットにおけるPV-RCNNのベースラインを,軽度,中等度,難易度でそれぞれ0.82%,0.74%,0.58%改善する。
さらに,本手法は,テストサーバ上の中等度,硬度のBEV APの下で,ベースラインを1%以上上回る性能を示した。
関連論文リスト
- Spatial-Temporal Graph Enhanced DETR Towards Multi-Frame 3D Object Detection [54.041049052843604]
STEMDは,多フレーム3Dオブジェクト検出のためのDETRのようなパラダイムを改良した,新しいエンドツーエンドフレームワークである。
まず、オブジェクト間の空間的相互作用と複雑な時間的依存をモデル化するために、空間的時間的グラフアテンションネットワークを導入する。
最後に、ネットワークが正のクエリと、ベストマッチしない他の非常に類似したクエリを区別することが課題となる。
論文 参考訳(メタデータ) (2023-07-01T13:53:14Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - Object DGCNN: 3D Object Detection using Dynamic Graphs [32.090268859180334]
3Dオブジェクト検出は、複雑なトレーニングとテストパイプラインを伴うことが多い。
近年,非最大抑圧型2次元物体検出モデルに着想を得て,点雲上の3次元物体検出アーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-10-13T17:59:38Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
単一の画像からの3Dオブジェクト検出は、自動運転において重要なタスクです。
本稿では,3次元物体検出の精度向上のために有用な情報を集約するインスタンス認識手法を提案する。
論文 参考訳(メタデータ) (2021-03-05T05:47:52Z) - SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection [9.924083358178239]
本稿では,3次元物体検出におけるコンテキストモデリングのための2種類の自己注意法を提案する。
まず,現状のbev,voxel,ポイントベース検出器にペアワイズ自着機構を組み込む。
次に,ランダムにサンプリングされた位置の変形を学習することにより,最も代表的な特徴のサブセットをサンプリングするセルフアテンション変種を提案する。
論文 参考訳(メタデータ) (2021-01-07T18:30:32Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Dynamic Edge Weights in Graph Neural Networks for 3D Object Detection [0.0]
本稿では,LiDARスキャンにおける物体検出のためのグラフニューラルネットワーク(GNN)における注目に基づく特徴集約手法を提案する。
GNNの各層では、ノードごとの入力特徴を対応する上位特徴にマッピングする線形変換とは別に、ノードごとの注意を隠蔽する。
KITTIデータセットを用いた実験により,本手法は3次元物体検出に匹敵する結果が得られることが示された。
論文 参考訳(メタデータ) (2020-09-17T12:56:17Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z) - GPS-Net: Graph Property Sensing Network for Scene Graph Generation [91.60326359082408]
シーングラフ生成(SGG)は、画像内のオブジェクトとそれらのペア関係を検出することを目的としている。
GPS-Netは、エッジ方向情報、ノード間の優先度の差、長期にわたる関係の分布という、SGGの3つの特性を網羅している。
GPS-Netは、VG、OI、VRDの3つの一般的なデータベース上での最先端のパフォーマンスを、さまざまな設定とメトリクスで大幅に向上させる。
論文 参考訳(メタデータ) (2020-03-29T07:22:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。