論文の概要: WarNav: An Autonomous Driving Benchmark for Segmentation of Navigable Zones in War Scenes
- arxiv url: http://arxiv.org/abs/2511.15429v1
- Date: Wed, 19 Nov 2025 13:32:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-20 15:51:28.821343
- Title: WarNav: An Autonomous Driving Benchmark for Segmentation of Navigable Zones in War Scenes
- Title(参考訳): WarNav: 戦争シーンにおけるナビゲーション可能なゾーンのセグメンテーションのための自動走行ベンチマーク
- Authors: Marc-Emmanuel Coupvent des Graviers, Hejer Ammar, Christophe Guettier, Yann Dumortier, Romaric Audigier,
- Abstract要約: WarNavは、オープンソースのDATTALIONリポジトリのイメージから構築された、新しい現実世界のデータセットである。
このデータセットは、従来の都市交通資源と、危険で損傷を受けた戦域において無人のシステムが遭遇するユニークな運用シナリオの間に重要なギャップに対処する。
- 参考スコア(独自算出の注目度): 4.932414280306692
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We introduce WarNav, a novel real-world dataset constructed from images of the open-source DATTALION repository, specifically tailored to enable the development and benchmarking of semantic segmentation models for autonomous ground vehicle navigation in unstructured, conflict-affected environments. This dataset addresses a critical gap between conventional urban driving resources and the unique operational scenarios encountered by unmanned systems in hazardous and damaged war-zones. We detail the methodological challenges encountered, ranging from data heterogeneity to ethical considerations, providing guidance for future efforts that target extreme operational contexts. To establish performance references, we report baseline results on WarNav using several state-of-the-art semantic segmentation models trained on structured urban scenes. We further analyse the impact of training data environments and propose a first step towards effective navigability in challenging environments with the constraint of having no annotation of the targeted images. Our goal is to foster impactful research that enhances the robustness and safety of autonomous vehicles in high-risk scenarios while being frugal in annotated data.
- Abstract(参考訳): WarNavは、オープンソースのDATTALIONリポジトリのイメージから構築された新しい実世界のデータセットであり、特に、非構造的、競合に影響を及ぼした環境での自律地上車両ナビゲーションのためのセマンティックセグメンテーションモデルの開発とベンチマークを可能にするように調整されている。
このデータセットは、従来の都市交通資源と、危険で破損した戦域において無人のシステムが遭遇するユニークな運用シナリオの間に重要なギャップに対処する。
本稿では,データの不均一性から倫理的考察に至るまで,遭遇した方法論的課題について詳述する。
性能基準を確立するために、構造化都市シーンで訓練されたいくつかの最先端セマンティックセマンティックセグメンテーションモデルを用いて、WarNavのベースライン結果を報告する。
我々はさらに、トレーニングデータ環境の影響を分析し、ターゲット画像のアノテーションがないという制約を伴って、挑戦環境における効果的なナビゲーション可能性への第一歩を提案する。
当社の目標は、高リスクシナリオにおける自動運転車の堅牢性と安全性を高めるとともに、注釈付きデータで虚偽であるインパクトフルな研究を促進することです。
関連論文リスト
- From Seeing to Experiencing: Scaling Navigation Foundation Models with Reinforcement Learning [59.88543114325153]
本稿では,航法基礎モデルの強化学習能力を高めるためのSeeing-to-Experiencingフレームワークを提案する。
S2Eは、ビデオの事前トレーニングとRLによるポストトレーニングの長所を組み合わせたものだ。
実世界のシーンを3DGSで再現した3D画像に基づく総合的なエンドツーエンド評価ベンチマークであるNavBench-GSを構築した。
論文 参考訳(メタデータ) (2025-07-29T17:26:10Z) - Risk Assessment for Autonomous Landing in Urban Environments using Semantic Segmentation [0.0]
都市環境のセマンティックセグメンテーションのために,最先端のビジュアルトランスフォーマーネットワークであるSegFormerを提案する。
提案手法はいくつかのケーススタディを通じて検証されている。
都市部における公民権の応用において、UAVの潜在能力を最大限に活用するのに役立つと信じている。
論文 参考訳(メタデータ) (2024-10-16T19:34:03Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
軌道予測はコンピュータビジョンと自律運転の基本である。
この分野における既存のアプローチは、しばしば正確で完全な観測データを仮定する。
本稿では,視覚的位置決め技術を利用した視線外軌道予測手法を提案する。
論文 参考訳(メタデータ) (2024-04-02T18:30:29Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormerは、GPSデータ、環境コンテキスト、運転者の視野を組み合わせた新しいエゴ軌道予測ネットワークである。
データ不足に対処し、多様性を高めるために、同期運転場と視線データに富んだ都市運転シナリオのデータセットであるGEMを導入する。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
Embodied AIにおけるオブジェクトゴールナビゲーション問題に対処するためのトレーニング不要のソリューションを提案する。
本手法は,古典的な視覚的同時ローカライゼーションとマッピング(V-SLAM)フレームワークに基づく,構造化されたシーン表現を構築する。
本手法は,言語先行情報とシーン統計に基づいてシーングラフのセマンティクスを伝搬し,幾何学的フロンティアに意味知識を導入する。
論文 参考訳(メタデータ) (2023-05-26T13:38:33Z) - Dynamics-Aware Spatiotemporal Occupancy Prediction in Urban Environments [37.00873004170998]
本稿では,ディープネットワークアーキテクチャを用いて2つの機能を統合するフレームワークを提案する。
本手法は実世界のOpenデータセット上で検証され,ベースライン法よりも高い予測精度を示す。
論文 参考訳(メタデータ) (2022-09-27T06:12:34Z) - Uncertainty-aware Perception Models for Off-road Autonomous Unmanned
Ground Vehicles [6.2574402913714575]
オフロード自律無人地上車両(UGV)は、遠隔地で重要な物資を供給するために軍用および商業用途のために開発されている。
現在のデータセットは、季節、場所、セマンティッククラス、および日時における多様性の欠如に対する、オフロード自律ナビゲーションのための知覚モデルのトレーニングに使用されています。
本研究では,複数のデータセットを組み合わせてセグメンテーションに基づく環境認識モデルを学習する方法について検討する。
我々は,不確実性を捉えるためにモデルをトレーニングすることで,モデルの性能を著しく向上させることができることを示した。
論文 参考訳(メタデータ) (2022-09-22T15:59:33Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models [76.32775745488073]
本研究では,非構造環境における動作計画の研究を目的とした,新しいデータセットとモデリングフレームワークを提案する。
コンセンサスに基づくモデリング手法により、データセットで観測された優先順位の出現を効果的に説明できることを実証する。
論文 参考訳(メタデータ) (2022-09-19T05:06:57Z) - Toward Unsupervised Test Scenario Extraction for Automated Driving
Systems from Urban Naturalistic Road Traffic Data [0.0]
提案手法は、道路交通データからシナリオを抽出するための教師なし機械学習パイプラインをデプロイする。
InDおよびSilicon Valley Intersectionsデータセットから都市交差点の自然道路交通データを評価する。
階層的クラスタリングを用いて,4から5クラスタに移行すると,全体の精度が約20%向上し,41クラスタから全体の精度が84%の飽和効果が得られた。
論文 参考訳(メタデータ) (2022-02-14T10:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。