論文の概要: Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models
- arxiv url: http://arxiv.org/abs/2209.08763v3
- Date: Wed, 16 Apr 2025 16:12:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-26 11:10:13.38551
- Title: Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models
- Title(参考訳): 分散車両コーディネート:バークレーのDeepDriveドローンデータセットとコンセンサスモデル
- Authors: Fangyu Wu, Dequan Wang, Minjune Hwang, Chenhui Hao, Jiawei Lu, Jiamu Zhang, Christopher Chou, Trevor Darrell, Alexandre Bayen,
- Abstract要約: 本研究では,非構造環境における動作計画の研究を目的とした,新しいデータセットとモデリングフレームワークを提案する。
コンセンサスに基づくモデリング手法により、データセットで観測された優先順位の出現を効果的に説明できることを実証する。
- 参考スコア(独自算出の注目度): 76.32775745488073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant portion of roads, particularly in densely populated developing countries, lacks explicitly defined right-of-way rules. These understructured roads pose substantial challenges for autonomous vehicle motion planning, where efficient and safe navigation relies on understanding decentralized human coordination for collision avoidance. This coordination, often termed "social driving etiquette," remains underexplored due to limited open-source empirical data and suitable modeling frameworks. In this paper, we present a novel dataset and modeling framework designed to study motion planning in these understructured environments. The dataset includes 20 aerial videos of representative scenarios, an image dataset for training vehicle detection models, and a development kit for vehicle trajectory estimation. We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset, and is therefore a viable framework for decentralized collision avoidance planning.
- Abstract(参考訳): 道路の大部分、特に人口密度の高い発展途上国では、明確に定義された道路のルールが欠落している。
これらの低構造道路は、衝突回避のための分散化された人間の協調を理解することによる、効率的で安全なナビゲーションという、自動運転車の運動計画に重大な課題を生んでいる。
このコーディネーションは、しばしば"social driving etiquette"と呼ばれ、限られたオープンソースの経験的データと適切なモデリングフレームワークのために未調査のままである。
本稿では,これらの非構造環境における動き計画の研究を目的とした,新しいデータセットとモデリングフレームワークを提案する。
データセットには、代表シナリオの20の空中ビデオ、車両検出モデルのトレーニング用イメージデータセット、車両軌道推定用開発キットが含まれている。
コンセンサスに基づくモデリング手法は,我々のデータセットで観測された優先順序の出現を効果的に説明し,分散衝突回避計画のためのフレームワークとして有効であることを実証する。
関連論文リスト
- INTENT: Trajectory Prediction Framework with Intention-Guided Contrastive Clustering [13.079901321614937]
本研究では,道路エージェントの意図の理解と推論が軌道予測タスクにおいて重要な役割を担っていることを主張する。
本稿では,道路エージェントの軌道に含まれる情報にのみ依存する効果的な意図誘導軌道予測モデルを提案する。
論文 参考訳(メタデータ) (2025-03-06T20:31:11Z) - MSMA: Multi-agent Trajectory Prediction in Connected and Autonomous Vehicle Environment with Multi-source Data Integration [4.2371435508360085]
本研究では,コネクテッド・自律走行車(CAV)が中心的エージェントとなるシナリオに着目した。
我々の軌道予測タスクは、検出された周辺車両すべてを対象としている。
センサと通信技術の両方のマルチソースデータを効果的に統合するために,MSMAと呼ばれるディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-31T03:26:14Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
TopoNetは、従来の知覚タスクを超えてトラフィック知識を抽象化できる最初のエンドツーエンドフレームワークである。
TopoNetを,難解なシーン理解ベンチマークOpenLane-V2で評価した。
論文 参考訳(メタデータ) (2023-04-11T15:23:29Z) - Exploring Contextual Representation and Multi-Modality for End-to-End
Autonomous Driving [58.879758550901364]
最近の知覚システムは、センサー融合による空間理解を高めるが、しばしば完全な環境コンテキストを欠いている。
我々は,3台のカメラを統合し,人間の視野をエミュレートするフレームワークを導入し,トップダウンのバードアイビューセマンティックデータと組み合わせて文脈表現を強化する。
提案手法は, オープンループ設定において0.67mの変位誤差を達成し, nuScenesデータセットでは6.9%の精度で現在の手法を上回っている。
論文 参考訳(メタデータ) (2022-10-13T05:56:20Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Collaborative 3D Object Detection for Automatic Vehicle Systems via
Learnable Communications [8.633120731620307]
本稿では,3つのコンポーネントから構成される新しい3次元オブジェクト検出フレームワークを提案する。
実験結果と帯域使用量分析により,本手法は通信コストと計算コストを削減できることを示した。
論文 参考訳(メタデータ) (2022-05-24T07:17:32Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
本稿では,エンド・ツー・エンドとマルチタスクの学習方法を用いて学習した新しいディープラーニングモデルを提案する。
このモデルは,CARLAシミュレータ上で,現実の環境を模倣するために,通常の状況と異なる天候のシナリオを用いて評価する。
論文 参考訳(メタデータ) (2022-04-12T03:57:01Z) - RTGNN: A Novel Approach to Model Stochastic Traffic Dynamics [9.267045415696263]
RTGNN(Recurrent Traffic Graph Neural Network)を提案する。
RTGNNはマルコフモデルであり、エゴ車両の運動に条件付けられた将来の交通状態を推測することができる。
我々は、トラフィックダイナミックスの本質的な部分的可観測性を反映するために、トラフィック状態の一部として、エージェントの隠れ状態である"意図"を明示的にモデル化する。
論文 参考訳(メタデータ) (2022-02-21T03:55:00Z) - Multi-modal Scene-compliant User Intention Estimation for Navigation [1.9117798322548485]
本研究では,移動体操作時のユーザ意図分布生成フレームワークを提案する。
モデルは過去の観測された軌跡から学習し、視覚環境から派生した可視性情報を活用する。
実験は、オープンソースの都市運転シミュレータCARLA上に構築されたカスタム車椅子モデルを用いて収集されたデータセット上で行われた。
論文 参考訳(メタデータ) (2021-06-13T05:11:33Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Open-set Intersection Intention Prediction for Autonomous Driving [9.494867137826397]
交点における意図の予測をオープンセット予測問題として定式化する。
空間時間グラフ表現の下での交差構造に対応する地図中心の特徴を捉える。
2つのmaam (mutually auxiliary attention module) を用いて,マップ中心の特徴空間における交叉要素に最もよくマッチする目標を予測する。
論文 参考訳(メタデータ) (2021-02-27T06:38:26Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - The NEOLIX Open Dataset for Autonomous Driving [1.4091801425319965]
自律走行領域におけるNEOLIXデータセットとその応用について述べる。
私たちのデータセットには、ポイントクラウドラベル付き約30,000フレームと、アノテーション付き600k以上の3Dバウンディングボックスが含まれています。
論文 参考訳(メタデータ) (2020-11-27T02:27:39Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
本稿では,センサデータから直接複雑な都市交通のシーン一貫性のある動き予測を学習することを目的とする。
我々は、シーンを相互作用グラフとしてモデル化し、強力なグラフニューラルネットワークを用いてシーンの分散潜在表現を学習する。
論文 参考訳(メタデータ) (2020-07-23T14:31:25Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - Cooperative Perception with Deep Reinforcement Learning for Connected
Vehicles [7.7003495898919265]
本研究では, 周辺物体の検出精度を高めるために, 深層強化学習を用いた協調認識方式を提案する。
本手法は、車両通信網におけるネットワーク負荷を軽減し、通信信頼性を高める。
論文 参考訳(メタデータ) (2020-04-23T01:44:12Z) - Trajectron++: Dynamically-Feasible Trajectory Forecasting With
Heterogeneous Data [37.176411554794214]
人間の動きに関する推論は、安全で社会的に認識されたロボットナビゲーションにとって重要な前提条件である。
我々は,多種多様なエージェントの軌道を予測できるモジュール型グラフ構造化リカレントモデルであるTrajectron++を提案する。
実世界の軌道予測データセットにおいて,その性能を実証する。
論文 参考訳(メタデータ) (2020-01-09T16:47:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。