論文の概要: From Competition to Coordination: Market Making as a Scalable Framework for Safe and Aligned Multi-Agent LLM Systems
- arxiv url: http://arxiv.org/abs/2511.17621v1
- Date: Tue, 18 Nov 2025 16:47:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.299875
- Title: From Competition to Coordination: Market Making as a Scalable Framework for Safe and Aligned Multi-Agent LLM Systems
- Title(参考訳): 競争からコーディネートへ:安全でアラインなマルチエージェントLLMシステムのためのスケーラブルなフレームワークとしての市場形成
- Authors: Brendan Gho, Suman Muppavarapu, Afnan Shaik, Tyson Tsay, James Begin, Kevin Zhu, Archana Vaidheeswaran, Vasu Sharma,
- Abstract要約: マルチエージェント大規模言語モデル(LLM)コーディネーションのための市場形成フレームワークを提案する。
この設定では、各エージェントは市場参加者として行動し、確率的信念を更新し、取引し、共有され、真実に満ちた結果へと収束する。
実証的に、本手法は、事実推論、倫理的判断、コモンセンス推論タスクにまたがって評価する。
- 参考スコア(独自算出の注目度): 5.165179548592513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As foundation models are increasingly deployed as interacting agents in multi-agent systems, their collective behavior raises new challenges for trustworthiness, transparency, and accountability. Traditional coordination mechanisms, such as centralized oversight or adversarial adjudication, struggle to scale and often obscure how decisions emerge. We introduce a market-making framework for multi-agent large language model (LLM) coordination that organizes agent interactions as structured economic exchanges. In this setup, each agent acts as a market participant, updating and trading probabilistic beliefs, to converge toward shared, truthful outcomes. By aligning local incentives with collective epistemic goals, the framework promotes self-organizing, verifiable reasoning without requiring external enforcement. Empirically, we evaluate this approach across factual reasoning, ethical judgment, and commonsense inference tasks. Market-based coordination yields accuracy gains of up to 10% over single-shot baselines while preserving interpretability and transparency of intermediate reasoning steps. Beyond these improvements, our findings demonstrate that economic coordination principles can operationalize accountability and robustness in multi-agent LLM systems, offering a scalable pathway toward self-correcting, socially responsible AI capable of maintaining trust and oversight in real world deployment scenarios.
- Abstract(参考訳): 基礎モデルがマルチエージェントシステムの相互作用エージェントとしてますますデプロイされるにつれて、それらの集団的行動は信頼性、透明性、説明責任に対する新たな課題を提起する。
中央集権的監視や敵対的判断のような伝統的な調整機構は、規模を拡大するのに苦労し、しばしば意思決定がどのように現れるのかを曖昧にする。
エージェント間相互作用を構造化経済交換として整理する多エージェント大規模言語モデル(LLM)コーディネートのための市場形成フレームワークを提案する。
この設定では、各エージェントは市場参加者として行動し、確率的信念を更新し、取引し、共有され、真実に満ちた結果へと収束する。
局所的なインセンティブを集団的てんかんの目標と整合させることにより、この枠組みは、外部の強制を必要とせず、自己組織的で検証可能な推論を促進する。
実感的推論,倫理的判断,コモンセンス推論タスクにまたがるアプローチを実証的に評価した。
市場ベースの調整は、解釈可能性と中間推論ステップの透明性を維持しながら、シングルショットベースラインよりも最大10%の精度向上をもたらす。
これらの改善に加えて、経済調整の原則がマルチエージェントLLMシステムの説明責任と堅牢性を運用し、現実のデプロイメントシナリオにおける信頼性と監視を維持できる自己修正、社会的責任を持つAIへのスケーラブルな経路を提供することを示した。
関連論文リスト
- A General Incentives-Based Framework for Fairness in Multi-agent Resource Allocation [4.930376365020355]
GIFF(General Incentives-based Framework for Fairness)を紹介する。
GIFFは、標準値関数から公平な意思決定を推測する、公平なマルチエージェントリソース割り当てのための新しいアプローチである。
論文 参考訳(メタデータ) (2025-10-30T17:37:51Z) - Magentic Marketplace: An Open-Source Environment for Studying Agentic Markets [74.91125572848439]
本稿では,サービスエージェントが消費者を代表し,サービスエージェントが競合するビジネスを代表する2面のエージェントマーケットプレースについて検討する。
この環境では、ユーティリティエージェントが達成する行動バイアス、操作に対する脆弱性、検索メカニズムが市場の結果をどのように形作るか、といった主要な市場ダイナミクスを研究することができる。
実験の結果、フロンティアモデルは最適な福祉に近づくことができるが、理想的な探索条件下でのみ適用可能であることが判明した。
論文 参考訳(メタデータ) (2025-10-27T18:35:59Z) - Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games [87.5673042805229]
大規模言語モデルは、アライメント、堅牢性、安全なデプロイメントを保証する上で、いかに自己関心と集合的幸福のバランスをとるかが重要な課題である。
我々は、行動経済学から制度的に選択した公共財ゲームに適応し、異なるLLMがいかに社会的ジレンマをナビゲートするかを観察することができる。
意外なことに、o1シリーズのようなLCMの推論は、協調にかなり苦労している。
論文 参考訳(メタデータ) (2025-06-29T15:02:47Z) - Human-AI Governance (HAIG): A Trust-Utility Approach [0.0]
本稿では,人間とAIの関係が進化する中で,信頼のダイナミクスを分析するためのHAIGフレームワークを紹介する。
我々の分析は、自己監督、推論権限、分散意思決定の技術的進歩が、不均一な信頼の進化をいかに引き起こすかを明らかにする。
論文 参考訳(メタデータ) (2025-05-03T01:57:08Z) - Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models [91.24296813969003]
本稿では,機械学習に因果的手法を取り入れて,信頼性の高いMLの主要な原則間のトレードオフをナビゲートすることを提唱する。
我々は、信頼できるMLと基礎モデルの両方において、複数の競合する目標のバランスをとるためには、因果的アプローチが不可欠であると主張する。
論文 参考訳(メタデータ) (2025-02-28T14:57:33Z) - Fairness in Agentic AI: A Unified Framework for Ethical and Equitable Multi-Agent System [0.0]
本稿では,公正性をエージェント相互作用の動的,創発的特性として扱う新しい枠組みを提案する。
この枠組みは、公正な制約、バイアス軽減戦略、および自律的なエージェント行動と社会的価値を整合させるインセンティブメカニズムを統合する。
論文 参考訳(メタデータ) (2025-02-11T04:42:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。