論文の概要: Agentic Reasoning for Large Language Models
- arxiv url: http://arxiv.org/abs/2601.12538v1
- Date: Sun, 18 Jan 2026 18:58:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.670717
- Title: Agentic Reasoning for Large Language Models
- Title(参考訳): 大規模言語モデルのためのエージェント推論
- Authors: Tianxin Wei, Ting-Wei Li, Zhining Liu, Xuying Ning, Ze Yang, Jiaru Zou, Zhichen Zeng, Ruizhong Qiu, Xiao Lin, Dongqi Fu, Zihao Li, Mengting Ai, Duo Zhou, Wenxuan Bao, Yunzhe Li, Gaotang Li, Cheng Qian, Yu Wang, Xiangru Tang, Yin Xiao, Liri Fang, Hui Liu, Xianfeng Tang, Yuji Zhang, Chi Wang, Jiaxuan You, Heng Ji, Hanghang Tong, Jingrui He,
- Abstract要約: 推論は推論、問題解決、意思決定の基礎となる基本的な認知プロセスである。
大規模言語モデル(LLM)は、クローズドワールド設定では強力な推論能力を示すが、オープンエンドおよび動的環境では苦労する。
エージェント推論は、連続的な相互作用を計画し、行動し、学習する自律的なエージェントとしてLLMを解釈することでパラダイムシフトを示す。
- 参考スコア(独自算出の注目度): 122.81018455095999
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning is a fundamental cognitive process underlying inference, problem-solving, and decision-making. While large language models (LLMs) demonstrate strong reasoning capabilities in closed-world settings, they struggle in open-ended and dynamic environments. Agentic reasoning marks a paradigm shift by reframing LLMs as autonomous agents that plan, act, and learn through continual interaction. In this survey, we organize agentic reasoning along three complementary dimensions. First, we characterize environmental dynamics through three layers: foundational agentic reasoning, which establishes core single-agent capabilities including planning, tool use, and search in stable environments; self-evolving agentic reasoning, which studies how agents refine these capabilities through feedback, memory, and adaptation; and collective multi-agent reasoning, which extends intelligence to collaborative settings involving coordination, knowledge sharing, and shared goals. Across these layers, we distinguish in-context reasoning, which scales test-time interaction through structured orchestration, from post-training reasoning, which optimizes behaviors via reinforcement learning and supervised fine-tuning. We further review representative agentic reasoning frameworks across real-world applications and benchmarks, including science, robotics, healthcare, autonomous research, and mathematics. This survey synthesizes agentic reasoning methods into a unified roadmap bridging thought and action, and outlines open challenges and future directions, including personalization, long-horizon interaction, world modeling, scalable multi-agent training, and governance for real-world deployment.
- Abstract(参考訳): 推論は推論、問題解決、意思決定の基礎となる基本的な認知プロセスである。
大規模言語モデル(LLM)は、クローズドワールド設定において強力な推論能力を示す一方で、オープンエンドおよび動的環境において苦労する。
エージェント推論は、連続的な相互作用を計画し、行動し、学習する自律的なエージェントとしてLLMを解釈することでパラダイムシフトを示す。
本研究では,エージェント推論を3つの相補的な側面に沿って整理する。
まず、安定環境における計画、ツール使用、探索を含む中核的な単一エージェント機能を確立する基礎的エージェント推論、フィードバック、記憶、適応を通じてエージェントがどのようにこれらの機能を洗練するかを研究する自己進化的エージェント推論、協調、知識共有、共有目標を含む協調的な設定にインテリジェンスを拡張する集合的マルチエージェント推論である。
これらの階層にわたって、構造化オーケストレーションによるテスト時間インタラクションをスケールするコンテキスト内推論と、強化学習と教師付き微調整による振る舞いを最適化するポストトレーニング後推論とを区別する。
さらに、科学、ロボティクス、医療、自律研究、数学など、現実世界のアプリケーションやベンチマークにまたがる代表的なエージェント推論フレームワークについてレビューする。
本調査では,エージェント推論手法を統合されたロードマップにまとめ,パーソナライゼーション,長期的インタラクション,世界モデリング,スケーラブルなマルチエージェントトレーニング,実世界展開のためのガバナンスなど,オープンな課題と今後の方向性を概説する。
関連論文リスト
- The Path Ahead for Agentic AI: Challenges and Opportunities [4.52683540940001]
この章では、複雑な環境で自律的に動作するエージェントAIシステムの出現について考察する。
我々は、統計モデルからトランスフォーマーベースのシステムへのアーキテクチャの進歩を辿り、エージェントの振る舞いを可能にする能力を識別する。
既存の調査とは異なり、私たちは、言語理解から自律的な行動へのアーキテクチャの移行に注目し、デプロイ前に解決しなければならない技術的ギャップを強調します。
論文 参考訳(メタデータ) (2026-01-06T06:31:42Z) - LLMs as Strategic Agents: Beliefs, Best Response Behavior, and Emergent Heuristics [0.0]
大規模言語モデル(LLM)は、他のエージェントの振る舞いを推論する必要のあるドメインにますます適用されています。
現状のフロンティアモデルでは, 目的的推論記憶における信念コヒーレントなベストレスポンス行動を示す。
複雑さが増大する中で、明示的な再帰は、安定した、モデル固有の、既知の人間のバイアスとは異なる選択規則を内部的に生成する手段を与える。
論文 参考訳(メタデータ) (2025-10-12T21:40:29Z) - A Survey of Self-Evolving Agents: On Path to Artificial Super Intelligence [87.08051686357206]
大きな言語モデル(LLM)は強力な能力を示しているが、基本的に静的である。
LLMはますますオープンでインタラクティブな環境にデプロイされているため、この静的な性質は重要なボトルネックとなっている。
この調査は、自己進化エージェントの体系的で包括的なレビューを初めて提供する。
論文 参考訳(メタデータ) (2025-07-28T17:59:05Z) - A Desideratum for Conversational Agents: Capabilities, Challenges, and Future Directions [51.96890647837277]
大規模言語モデル(LLM)は、従来の対話システムから、自律的な行動、文脈認識、ユーザとのマルチターンインタラクションが可能な高度なエージェントへと、会話AIを推進してきた。
本調査では,人間レベルの知性にアプローチするよりスケーラブルなシステムにおいて,何が達成されたのか,どのような課題が持続するのか,何を行う必要があるのか,といった,次世代の会話エージェントのデシラトゥムを提示する。
論文 参考訳(メタデータ) (2025-04-07T21:01:25Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
この本は、モジュール化された脳に触発されたアーキテクチャの中で、インテリジェントなエージェントをフレーミングする、包括的な概要を提供する。
自己向上と適応的な進化のメカニズムを探求し、エージェントが自律的に能力を洗練する方法を探求する。
また、エージェントの相互作用、協力、社会構造から生じる集合的知性についても調べる。
論文 参考訳(メタデータ) (2025-03-31T18:00:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。