論文の概要: A multi-view contrastive learning framework for spatial embeddings in risk modelling
- arxiv url: http://arxiv.org/abs/2511.17954v1
- Date: Sat, 22 Nov 2025 07:39:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.538518
- Title: A multi-view contrastive learning framework for spatial embeddings in risk modelling
- Title(参考訳): リスクモデリングにおける空間埋め込みのためのマルチビューコントラスト学習フレームワーク
- Authors: Freek Holvoet, Christopher Blier-Wong, Katrien Antonio,
- Abstract要約: 空間データは、しばしば非構造的で、高次元であり、予測モデルに統合することは困難である。
空間埋め込みを生成するための新しい多視点コントラスト学習フレームワークを提案する。
フランスの不動産価格に関するケーススタディでは、生座標で訓練されたモデルと、空間埋め込みを入力として使用するモデルを比較した。
- 参考スコア(独自算出の注目度): 0.688204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.
- Abstract(参考訳): 空間情報、特に気候、気象、人口統計要因に影響された情報を組み込むことは、保険の精度の向上とリスク管理の強化に不可欠である。
しかし、空間データは、しばしば非構造的で、高次元であり、予測モデルに統合することは困難である。
空間データをモデリングタスクの有意義な表現に変換するには埋め込み法が必要である。
複数の空間データソースからの情報を組み合わせた空間埋め込みを生成するための,新しい多視点コントラスト学習フレームワークを提案する。
モデルをトレーニングするために,衛星画像とOpenStreetMap機能を統合した空間データセットを構築した。
このフレームワークはこれらの空間ビューを座標ベースの符号化と整合させ、空間構造と文脈的類似性の両方をキャプチャする低次元の埋め込みを生成する。
トレーニングが完了すると、モデルは緯度-経度ペアから直接埋め込みを生成し、座標を持つデータセットは、元の空間入力にアクセスすることなく、意味のある空間的特徴に富むことができる。
フランスの不動産価格に関するケーススタディでは、生座標で訓練されたモデルと、空間埋め込みを入力として使用するモデルを比較した。
埋め込みは、一般化された線形、加法、ブースティングモデル全体にわたって予測精度を一貫して改善し、解釈可能な空間効果を提供し、目に見えない領域への転送性を示す。
関連論文リスト
- R2RGEN: Real-to-Real 3D Data Generation for Spatially Generalized Manipulation [74.41728218960465]
本稿では,実世界のデータを生成するために,ポイントクラウド観測-アクションペアを直接拡張するリアルタイム3Dデータ生成フレームワーク(R2RGen)を提案する。
R2RGenは、広範な実験におけるデータの効率を大幅に向上させ、モバイル操作におけるスケーリングと応用の強い可能性を示す。
論文 参考訳(メタデータ) (2025-10-09T17:55:44Z) - Spatial Knowledge Graph-Guided Multimodal Synthesis [78.11669780958657]
本稿では,空間知識グラフによって導かれる新しいマルチモーダル合成手法を提案する。
実験では、方向や距離を含む多様な空間知識から合成されたデータにより、MLLMの空間知覚と推論能力が著しく向上する。
知識に基づくデータ合成のアイデアが空間知性の発展を促進することを願っている。
論文 参考訳(メタデータ) (2025-05-28T17:50:21Z) - ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis [45.625062335269355]
拡散モデルはテキスト・ツー・イメージ(T2I)合成に革命をもたらし、高品質でフォトリアリスティックな画像を生成する。
しかし、テキストプロンプトで記述された空間的関係を適切に表現するのに依然として苦労している。
我々のアプローチは、LAION-400Mから精密に抽出され、合成された空間的明示的なプロンプトのキュレートされたデータセットの上に構築されている。
生成モデルにおける空間整合性を高めるために,低ランク適応に基づくフレキシブルな微調整フレームワークであるESPLoRAを提案する。
論文 参考訳(メタデータ) (2025-04-18T15:21:37Z) - SSIN: Self-Supervised Learning for Rainfall Spatial Interpolation [37.212272184144]
降雨空間分析のためのデータ駆動型自己教師型学習フレームワークを提案する。
過去のデータから潜伏した空間パターンをマイニングすることで、SpaFormerは生データに対する情報埋め込みを学び、空間相関を適応的にモデル化することができる。
本手法は,2つの実世界のラリングオージデータセットの実験において,最先端のソリューションよりも優れる。
論文 参考訳(メタデータ) (2023-11-27T04:23:47Z) - Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching [60.645802236700035]
自然言語コマンドを通じてドローンをナビゲートすることは、アクセス可能なマルチモーダルデータセットが不足しているため、依然として難しい。
我々は新しい自然言語誘導ジオローカライゼーションベンチマークGeoText-1652を紹介する。
このデータセットは、インタラクティブなヒューマンコンピュータプロセスを通じて体系的に構築される。
論文 参考訳(メタデータ) (2023-11-21T17:52:30Z) - SARN: Structurally-Aware Recurrent Network for Spatio-Temporal Disaggregation [8.636014676778682]
オープンデータは、通常プライバシーポリシーに従うために、しばしば空間的に集約される。しかし、粗い、異質な集約は、下流のAI/MLシステムに対する一貫性のある学習と統合を複雑にする。
本稿では,空間的注意層をGRU(Gated Recurrent Unit)モデルに統合したSARN(Structurely-Aware Recurrent Network)を提案する。
履歴学習データに制限のあるシナリオでは、ある都市変数に事前学習したモデルを、数百のサンプルのみを用いて、他の都市変数に対して微調整できることを示す。
論文 参考訳(メタデータ) (2023-06-09T21:01:29Z) - Deep Spatial Domain Generalization [8.102110157532556]
本研究では,空間データをグラフとして扱う空間グラフニューラルネットワークを開発し,各ノードに空間埋め込みを学習する。
提案手法は,テストフェーズ中に見つからない位置の空間埋め込みを推定し,下流タスクモデルのパラメータを目標位置に直接デコードする。
論文 参考訳(メタデータ) (2022-10-03T06:16:20Z) - Smoothing the Generative Latent Space with Mixup-based Distance Learning [32.838539968751924]
我々は、我々の関心の大規模なデータセットも、転送可能なソースデータセットも利用できない状況を考える。
本稿では,ジェネレータとディスクリミネータの両方の特徴空間における遅延混合に基づく距離正規化を提案する。
論文 参考訳(メタデータ) (2021-11-23T06:39:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。