論文の概要: Brain-MGF: Multimodal Graph Fusion Network for EEG-fMRI Brain Connectivity Analysis Under Psilocybin
- arxiv url: http://arxiv.org/abs/2511.18325v1
- Date: Sun, 23 Nov 2025 07:31:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.776501
- Title: Brain-MGF: Multimodal Graph Fusion Network for EEG-fMRI Brain Connectivity Analysis Under Psilocybin
- Title(参考訳): Brain-MGF:Psilocybinによる脳波fMRI脳結合解析のためのマルチモーダルグラフ融合ネットワーク
- Authors: Sin-Yee Yap, Fuad Noman, Junn Yong Loo, Devon Stoliker, Moein Khajehnejad, Raphaël C. -W. Phan, David L. Dowe, Adeel Razi, Chee-Ming Ting,
- Abstract要約: 脳波-fMRI接続解析のためのマルチモーダルグラフ融合ネットワークBrain-MGFを提案する。
各モダリティに対して、部分相関エッジとピアソンに代表されるノード特徴を持つグラフを構築し、対象レベルの埋め込みを学習する。
適応的なソフトマックスゲートは、コンテキスト依存のコントリビューションをキャプチャするために、サンプル固有の重みとモダリティを融合する。
- 参考スコア(独自算出の注目度): 11.012917763300408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Psychedelics, such as psilocybin, reorganise large-scale brain connectivity, yet how these changes are reflected across electrophysiological (electroencephalogram, EEG) and haemodynamic (functional magnetic resonance imaging, fMRI) networks remains unclear. We present Brain-MGF, a multimodal graph fusion network for joint EEG-fMRI connectivity analysis. For each modality, we construct graphs with partial-correlation edges and Pearson-profile node features, and learn subject-level embeddings via graph convolution. An adaptive softmax gate then fuses modalities with sample-specific weights to capture context-dependent contributions. Using the world's largest single-site psilocybin dataset, PsiConnect, Brain-MGF distinguishes psilocybin from no-psilocybin conditions in meditation and rest. Fusion improves over unimodal and non-adaptive variants, achieving 74.0% accuracy and 76.5% F1 score on meditation, and 76.0% accuracy with 85.8% ROC-AUC on rest. UMAP visualisations reveal clearer class separation for fused embeddings. These results indicate that adaptive graph fusion effectively integrates complementary EEG-fMRI information, providing an interpretable framework for characterising psilocybin-induced alterations in large-scale neural organisation.
- Abstract(参考訳): シロシビンのようなサイケデリックは、大規模な脳の接続を再編成するが、これらの変化が電気生理学的(脳波、脳波)とヘモダイナミック(機能的磁気共鳴イメージング、fMRI)ネットワークにどのように反映されるかは、未だ不明である。
脳波-fMRI接続解析のためのマルチモーダルグラフ融合ネットワークBrain-MGFを提案する。
各モダリティに対して、部分相関エッジとピアソンを特徴とするノード特徴を持つグラフを構築し、グラフ畳み込みによる対象レベルの埋め込みを学習する。
適応的なソフトマックスゲートは、コンテキスト依存のコントリビューションをキャプチャするために、サンプル固有の重みとモダリティを融合する。
世界最大のシングルサイトシロシビンデータセットであるPsiConnectを使用することで、Brain-MGFはシロシビンと無シロシビン条件を想起と休息で区別する。
核融合は単調な変種と非適応的な変種で改善され、74.0%の精度と76.5%のF1スコア、76.0%の精度と85.8%のROC-AUCが静止している。
UMAPビジュアライゼーションにより、融合埋め込みのためのクラス分離がより明確になる。
これらの結果は、適応グラフ融合が相補的な脳波-fMRI情報を効果的に統合し、大規模な神経組織においてシロシビンによる変化を特徴づけるための解釈可能な枠組みを提供することを示している。
関連論文リスト
- Adapting HFMCA to Graph Data: Self-Supervised Learning for Generalizable fMRI Representations [57.054499278843856]
機能的磁気共鳴画像(fMRI)解析は、データセットのサイズが限られ、研究間でのドメインの変動が原因で大きな課題に直面している。
コンピュータビジョンにインスパイアされた従来の自己教師付き学習手法は、正と負のサンプルペアに依存することが多い。
本稿では,最近開発された階層関数最大相関アルゴリズム(HFMCA)をグラフ構造fMRIデータに適用することを提案する。
論文 参考訳(メタデータ) (2025-10-05T12:35:01Z) - BrainOmni: A Brain Foundation Model for Unified EEG and MEG Signals [46.121056431476156]
異種脳波とMEG記録を対象とする脳基礎モデルBrain Omniを提案する。
既存のアプローチは一般的に、パフォーマンスとクロスドメインのスケーラビリティを制限する、分離、モダリティ、データセット固有のモデルに依存します。
EEGの合計1,997時間、MEGデータの656時間は、事前トレーニングのために公開されているソースからキュレーションされ、標準化されている。
論文 参考訳(メタデータ) (2025-05-18T14:07:14Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
階層型構造機能接続ファジング(HSCF)モデルを提案し,脳構造機能接続行列を構築した。
公的なアルツハイマー病神経画像イニシアチブデータベース上で行われた幅広いテストの結果、提案モデルは競合するアプローチよりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-16T05:22:25Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - Hierarchical Graph Convolutional Network Built by Multiscale Atlases for
Brain Disorder Diagnosis Using Functional Connectivity [48.75665245214903]
本稿では,脳疾患診断のためのマルチスケールFCN解析を行うための新しいフレームワークを提案する。
まず、マルチスケールFCNを計算するために、明確に定義されたマルチスケールアトラスのセットを用いる。
そこで我々は, 生物的に有意な脳階層的関係を多スケールアトラスの領域で利用し, 結節プールを行う。
論文 参考訳(メタデータ) (2022-09-22T04:17:57Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Brain Tumor Detection and Classification Using a New Evolutionary
Convolutional Neural Network [18.497065020090062]
この研究の目的は、健康な患者と不健康な患者を区別するために脳MRI画像を使用することである。
深層学習技術は近年、脳腫瘍をより正確に、堅牢に診断する方法として関心を喚起している。
論文 参考訳(メタデータ) (2022-04-26T13:20:42Z) - Ensemble manifold based regularized multi-modal graph convolutional
network for cognitive ability prediction [33.03449099154264]
マルチモーダル機能磁気共鳴イメージング(fMRI)を使用して、脳の接続ネットワークに基づいて個々の行動特性および認知特性を予測することができます。
本稿では,fMRI時系列と各脳領域間の機能接続(FC)を組み込んだ,解釈可能な多モードグラフ畳み込みネットワーク(MGCN)モデルを提案する。
我々は、フィラデルフィア神経開発コホート上のMGCNモデルを検証し、個々の広範囲達成テスト(WRAT)スコアを予測します。
論文 参考訳(メタデータ) (2021-01-20T20:53:07Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
論文 参考訳(メタデータ) (2020-06-16T04:57:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。