論文の概要: GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals
- arxiv url: http://arxiv.org/abs/2006.08924v4
- Date: Fri, 26 Aug 2022 07:56:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 19:02:57.930439
- Title: GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals
- Title(参考訳): GCNs-Net:時間分解型EEGモータ画像信号復号のためのグラフ畳み込みニューラルネットワークアプローチ
- Authors: Yimin Hou, Shuyue Jia, Xiangmin Lun, Ziqian Hao, Yan Shi, Yang Li, Rui
Zeng, Jinglei Lv
- Abstract要約: グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークを提案し,生の脳波信号の復号性能を向上させる。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
- 参考スコア(独自算出の注目度): 8.19994663278877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Towards developing effective and efficient brain-computer interface (BCI)
systems, precise decoding of brain activity measured by electroencephalogram
(EEG), is highly demanded. Traditional works classify EEG signals without
considering the topological relationship among electrodes. However,
neuroscience research has increasingly emphasized network patterns of brain
dynamics. Thus, the Euclidean structure of electrodes might not adequately
reflect the interaction between signals. To fill the gap, a novel deep learning
framework based on the graph convolutional neural networks (GCNs) is presented
to enhance the decoding performance of raw EEG signals during different types
of motor imagery (MI) tasks while cooperating with the functional topological
relationship of electrodes. Based on the absolute Pearson's matrix of overall
signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net
constructed by graph convolutional layers learns the generalized features. The
followed pooling layers reduce dimensionality, and the fully-connected softmax
layer derives the final prediction. The introduced approach has been shown to
converge for both personalized and group-wise predictions. It has achieved the
highest averaged accuracy, 93.06% and 88.57% (PhysioNet Dataset), 96.24% and
80.89% (High Gamma Dataset), at the subject and group level, respectively,
compared with existing studies, which suggests adaptability and robustness to
individual variability. Moreover, the performance is stably reproducible among
repetitive experiments for cross-validation. The excellent performance of our
method has shown that it is an important step towards better BCI approaches. To
conclude, the GCNs-Net filters EEG signals based on the functional topological
relationship, which manages to decode relevant features for brain motor
imagery.
- Abstract(参考訳): 効果的で効率的な脳-コンピューターインタフェース(bci)システムの開発に向けて、脳波による脳活動の正確なデコード(eeg)が求められている。
従来、電極間のトポロジカルな関係を考慮せずに脳波信号を分類していた。
しかし、神経科学の研究は脳のダイナミクスのネットワークパターンを強調している。
したがって、電極のユークリッド構造は信号間の相互作用を十分に反映していない。
このギャップを埋めるために、グラフ畳み込みニューラルネットワーク(GCN)に基づく新しいディープラーニングフレームワークが提示され、電極の機能的トポロジ的関係と協調しながら、様々な種類の運動画像(MI)タスク中に生の脳波信号の復号性能を向上させる。
信号全体の絶対的なピアソン行列に基づいて、EEG電極のグラフラプラシアンが構築される。
グラフ畳み込み層によって構築されたGCNs-Netは、一般化された特徴を学習する。
その後のプーリング層は次元を減少させ、完全連結のソフトマックス層は最終予測を導出する。
導入されたアプローチは、パーソナライズされた予測とグループ的な予測の両方に収束することが示されている。
平均精度は93.06%と88.57%(物理データセット)、96.24%と80.89%(高ガンマデータセット)であり、既存の研究と比較すると、個々の変動性への適応性と堅牢性が示唆されている。
また, 繰り返し評価実験において, 性能は安定的に再現可能である。
提案手法の優れた性能は,より優れたBCIアプローチに向けた重要なステップであることを示している。
結論として、gcns-netは脳波信号を機能的位相関係に基づいてフィルタリングし、脳運動画像に関連する特徴を解読する。
関連論文リスト
- CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
脳波信号の表現にマルチモーダルデータを完全に活用する統合フレームワークであるCognitionCapturerを提案する。
具体的には、CognitionCapturerは、各モダリティに対してモダリティエキスパートを訓練し、EEGモダリティからモダリティ情報を抽出する。
このフレームワークは生成モデルの微調整を一切必要とせず、より多くのモダリティを組み込むように拡張することができる。
論文 参考訳(メタデータ) (2024-12-13T16:27:54Z) - Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data [6.401370088497331]
本稿では,脳波の位置と対応する脳領域のセマンティクスの相互作用を捉える動的グラフニューラルネットワーク(GNN)フレームワークであるNeuroGNNを紹介する。
実世界のデータを用いた実験により、NeuroGNNは既存の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-05-08T21:36:49Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - EEGSN: Towards Efficient Low-latency Decoding of EEG with Graph Spiking
Neural Networks [4.336065967298193]
ほとんどのニューラルネットワーク(SNN)は、低レイテンシと電力効率を必要とするいくつかの重要なタスクに必ずしも適合しない誘導バイアスに基づいてトレーニングされている。
本稿では、分散脳波センサに存在する動的関係情報を学習する多チャンネル脳波分類(EEGS)のためのグラフスパイクニューラルアーキテクチャを提案する。
提案手法は,従来のSNNと比較して,推定計算の複雑さを20ドル程度削減し,モータ実行タスクにおいて同等の精度を達成した。
論文 参考訳(メタデータ) (2023-04-15T23:30:17Z) - DBGDGM: Dynamic Brain Graph Deep Generative Model [63.23390833353625]
グラフは機能的磁気画像(fMRI)データから得られる脳活動の自然な表現である。
機能的接続ネットワーク(FCN)として知られる解剖学的脳領域のクラスターは、脳の機能や機能不全を理解するのに有用なバイオマーカーとなる時間的関係を符号化することが知られている。
しかし、以前の研究は脳の時間的ダイナミクスを無視し、静的グラフに焦点を当てていた。
本稿では,脳の領域を時間的に進化するコミュニティにクラスタリングし,非教師なしノードの動的埋め込みを学習する動的脳グラフ深部生成モデル(DBGDGM)を提案する。
論文 参考訳(メタデータ) (2023-01-26T20:45:30Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
我々は、畳み込みニューラルネットワーク(CNN)とグラフ畳み込みニューラルネットワーク(GCNN)を統合するハイブリッドネットワークであるEEG-BBNetを提案する。
我々のモデルは、イベント関連電位(ERP)タスクにおけるすべてのベースラインを、セッション内データを用いて平均99.26%の正確な認識率で上回ります。
論文 参考訳(メタデータ) (2022-08-17T10:18:22Z) - EEG-GNN: Graph Neural Networks for Classification of
Electroencephalogram (EEG) Signals [20.991468018187362]
畳み込みニューラルネットワーク(CNN)は脳波(EEG)から主観的不変の特徴を抽出するために頻繁に用いられる。
電極部位の機能的ネットワークに対する2次元グリッド型入力に適用される畳み込みとプーリングの概念を調整することにより、この制限を克服する。
我々は,グラフのノードに電極を投影する様々なグラフニューラルネットワーク(GNN)モデルを開発し,ノードの特徴を試行錯誤時に収集したEEGチャネルのサンプルとして表現し,ノードを重み付き/非重み付きエッジで接続する。
論文 参考訳(メタデータ) (2021-06-16T21:19:12Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - Attention-based Graph ResNet for Motor Intent Detection from Raw EEG
signals [8.775745069873558]
前回の研究では、脳波(EEG)信号は脳波電極のトポロジカルな関係を考慮していない。
グラフ畳み込みニューラルネットワーク(GCN: Graph Convolutional Neural Network)の新たな構造である、注意に基づくグラフ残差ネットワークが、人間の運動意図を検出するために提示された。
生の脳波運動画像における深部ネットワークに関する劣化問題に対処するために, フルアテンションアーキテクチャによる深部学習を導入した。
論文 参考訳(メタデータ) (2020-06-25T09:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。