論文の概要: Dendritic Convolution for Noise Image Recognition
- arxiv url: http://arxiv.org/abs/2511.18699v1
- Date: Mon, 24 Nov 2025 02:43:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-25 18:34:24.981286
- Title: Dendritic Convolution for Noise Image Recognition
- Title(参考訳): ノイズ画像認識のための樹状コンボリューション
- Authors: Jiarui Xue, Dongjian Yang, Ye Sun, Gang Liu,
- Abstract要約: 本稿では, 抗ノイズ性神経畳み込み法を提案する。
これは神経細胞の樹状突起構造を模倣し、樹状突起の近傍相互作用論理を畳み込み操作の基本設計に統合する。
この畳み込みの計算法と生物学的ニューロンのデンドライトとの整合性により、複雑な雑音環境下での従来の畳み込みよりもはるかに優れた性能を発揮する。
- 参考スコア(独自算出の注目度): 2.4441564897090164
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In real-world scenarios of image recognition, there exists substantial noise interference. Existing works primarily focus on methods such as adjusting networks or training strategies to address noisy image recognition, and the anti-noise performance has reached a bottleneck. However, little is known about the exploration of anti-interference solutions from a neuronal perspective.This paper proposes an anti-noise neuronal convolution. This convolution mimics the dendritic structure of neurons, integrates the neighborhood interaction computation logic of dendrites into the underlying design of convolutional operations, and simulates the XOR logic preprocessing function of biological dendrites through nonlinear interactions between input features, thereby fundamentally reconstructing the mathematical paradigm of feature extraction. Unlike traditional convolution where noise directly interferes with feature extraction and exerts a significant impact, DDC mitigates the influence of noise by focusing on the interaction of neighborhood information. Experimental results demonstrate that in image classification tasks (using YOLOv11-cls, VGG16, and EfficientNet-B0) and object detection tasks (using YOLOv11, YOLOv8, and YOLOv5), after replacing traditional convolution with the dendritic convolution, the accuracy of the EfficientNet-B0 model on noisy datasets is relatively improved by 11.23%, and the mean Average Precision (mAP) of YOLOv8 is increased by 19.80%. The consistency between the computation method of this convolution and the dendrites of biological neurons enables it to perform significantly better than traditional convolution in complex noisy environments.
- Abstract(参考訳): 実世界の画像認識のシナリオでは、かなりのノイズ干渉が存在する。
既存の作業は主に、ノイズの多い画像認識に対処するネットワークの調整やトレーニング戦略などの手法に重点を置いており、アンチノイズ性能はボトルネックに達している。
しかし、神経学的観点からの抗干渉溶液の探索についてはほとんど分かっておらず、本論文では、抗ノイズ性神経細胞の畳み込みを提案する。
この畳み込みは、ニューロンの樹状体構造を模倣し、樹状体の近傍相互作用計算ロジックを畳み込み操作の基本設計に統合し、入力特徴間の非線形相互作用を通じて生物学的樹状体のXORロジック前処理機能をシミュレートし、特徴抽出の数学的パラダイムを根本的に再構築する。
ノイズが特徴抽出に直接干渉して大きな影響を与える従来の畳み込みとは異なり、DDCは近傍情報の相互作用に着目してノイズの影響を緩和する。
画像分類タスク(YOLOv11-cls, VGG16, EfficientNet-B0)やオブジェクト検出タスク(YOLOv11, YOLOv8, YOLOv5)では, 従来の畳み込みを樹状突起の畳み込みに置き換えた後に, ノイズデータセット上の効率的なNet-B0モデルの精度が11.23%向上し, YOLOv8の平均精度(mAP)が1980%向上した。
この畳み込みの計算法と生物学的ニューロンのデンドライトとの整合性により、複雑な雑音環境下での従来の畳み込みよりもはるかに優れた性能を発揮する。
関連論文リスト
- Exploring Kernel Transformations for Implicit Neural Representations [57.2225355625268]
入射神経表現(INR)は、ニューラルネットワークを利用して、対応する属性に座標をマッピングすることで、信号を表現する。
この研究は、モデル自体を変更せずに入出力のカーネル変換の効果を探求する先駆者となった。
我々の発見の副産物は、スケールとシフトを組み合わせて、INRを無視できないオーバーヘッドで著しく向上させる、単純で効果的な方法である。
論文 参考訳(メタデータ) (2025-04-07T04:43:50Z) - Efficient Noise Mitigation for Enhancing Inference Accuracy in DNNs on Mixed-Signal Accelerators [4.416800723562206]
我々は、アナログニューラルネットワークの精度に基づいて、プロセス誘起および老化に関連するアナログコンピューティングコンポーネントのバリエーションをモデル化する。
事前学習モデルの選択した層間に挿入された遮音ブロックを導入する。
雑音レベルに対するモデルのロバスト性を大幅に向上させることを実証した。
論文 参考訳(メタデータ) (2024-09-27T08:45:55Z) - BDHT: Generative AI Enables Causality Analysis for Mild Cognitive Impairment [34.60961915466469]
軽度認知障害 (MCI) 解析に有効な接続性を推定するために, 階層型トランスフォーマー (BDHT) を用いた脳ディフューザを提案する。
提案手法は,既存手法に比べて精度と頑健性に優れる。
論文 参考訳(メタデータ) (2023-12-14T15:12:00Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Self-Supervised Single-Image Deconvolution with Siamese Neural Networks [6.138671548064356]
画像再構成における逆問題は、未知のノイズ特性によって根本的に複雑である。
ディープラーニングの手法は、ノイズのフレキシブルなパラメトリゼーションを可能にし、データから直接その特性を学習する。
我々は3次元デコンボリューションタスクにおけるトレーニング速度アップを提供する高速フーリエ変換畳み込み問題に対処する。
論文 参考訳(メタデータ) (2023-08-18T09:51:11Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
機能的磁気共鳴画像(fMRI)を軽度認知障害解析のための効果的な接続性にマッピングするために,脳画像から画像へのBIGG(Brain Imaging-to-graph generation)フレームワークを提案する。
発電機の階層変換器は、複数のスケールでノイズを推定するように設計されている。
ADNIデータセットの評価は,提案モデルの有効性と有効性を示す。
論文 参考訳(メタデータ) (2023-05-18T06:54:56Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
画像データに対するエラーカーネル駆動型アクティベーションアライメントアルゴリズムを提案する。
EKDAAは、ローカルに派生したエラー送信カーネルとエラーマップを導入することで達成される。
結果は、識別不能なアクティベーション機能を利用するEKDAAトレーニングCNNに対して提示される。
論文 参考訳(メタデータ) (2022-06-03T21:14:10Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Robust Processing-In-Memory Neural Networks via Noise-Aware
Normalization [26.270754571140735]
PIM加速器は、しばしば物理的成分の固有のノイズに悩まされる。
雑音設定に対してロバストなニューラルネットワーク性能を実現するためのノイズ非依存手法を提案する。
論文 参考訳(メタデータ) (2020-07-07T06:51:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。