論文の概要: Federated Learning Framework for Scalable AI in Heterogeneous HPC and Cloud Environments
- arxiv url: http://arxiv.org/abs/2511.19479v1
- Date: Sat, 22 Nov 2025 18:39:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-26 17:37:04.024683
- Title: Federated Learning Framework for Scalable AI in Heterogeneous HPC and Cloud Environments
- Title(参考訳): 不均一なHPCとクラウド環境におけるスケーラブルAIのためのフェデレーション学習フレームワーク
- Authors: Sangam Ghimire, Paribartan Timalsina, Nirjal Bhurtel, Bishal Neupane, Bigyan Byanju Shrestha, Subarna Bhattarai, Prajwal Gaire, Jessica Thapa, Sudan Jha,
- Abstract要約: 我々は、HPCとクラウドの混在する環境を効率的に動かすために構築された連合学習フレームワークを提案する。
本システムは,モデル精度とデータプライバシを維持しつつ,システムヘット・エロジニティ,通信オーバーヘッド,リソーススケジューリングといった重要な課題に対処する。
- 参考スコア(独自算出の注目度): 0.1805840413757548
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the demand grows for scalable and privacy-aware AI systems, Federated Learning (FL) has emerged as a promising solution, allowing decentralized model training without moving raw data. At the same time, the combination of high- performance computing (HPC) and cloud infrastructure offers vast computing power but introduces new complexities, especially when dealing with heteroge- neous hardware, communication limits, and non-uniform data. In this work, we present a federated learning framework built to run efficiently across mixed HPC and cloud environments. Our system addresses key challenges such as system het- erogeneity, communication overhead, and resource scheduling, while maintaining model accuracy and data privacy. Through experiments on a hybrid testbed, we demonstrate strong performance in terms of scalability, fault tolerance, and convergence, even under non-Independent and Identically Distributed (non-IID) data distributions and varied hardware. These results highlight the potential of federated learning as a practical approach to building scalable Artificial Intelligence (AI) systems in modern, distributed computing settings.
- Abstract(参考訳): スケーラブルでプライバシを意識したAIシステムに対する需要が増大するにつれ、フェデレートラーニング(FL)は有望なソリューションとして登場し、生データを移動せずに分散モデルトレーニングを可能にする。
同時に、ハイパフォーマンスコンピューティング(HPC)とクラウドインフラストラクチャの組み合わせは、膨大なコンピューティングパワーを提供するが、特にヘテロジ・ネオラスハードウェア、通信制限、および一様でないデータを扱う場合、新しい複雑さをもたらす。
本研究では,HPCとクラウド環境の混在を効果的に行うために構築されたフェデレーション学習フレームワークを提案する。
本システムは,モデル精度とデータプライバシを維持しつつ,システムヘット・エロジニティ,通信オーバーヘッド,リソーススケジューリングといった重要な課題に対処する。
ハイブリッドテストベッドの実験を通じて,非独立分散(非IID)データ分散や各種ハードウェアにおいても,スケーラビリティ,耐障害性,収束性の面で高い性能を示す。
これらの結果は、現代の分散コンピューティング環境でスケーラブル人工知能(AI)システムを構築するための実践的なアプローチとして、連合学習の可能性を強調している。
関連論文リスト
- A Survey on Cloud-Edge-Terminal Collaborative Intelligence in AIoT Networks [49.90474228895655]
クラウドエッジ端末協調インテリジェンス(CETCI)は、モノの人工知能(AIoT)コミュニティにおける基本的なパラダイムである。
CETCIは、分離されたレイヤ最適化からデプロイ可能なコラボレーティブインテリジェンスシステムに移行する、新興のAIoTアプリケーションで大きな進歩を遂げた。
本調査では、基礎アーキテクチャ、CETCIパラダイムのテクノロジの実現、シナリオについて解説し、CISAIOT初心者向けのチュートリアルスタイルのレビューを提供する。
論文 参考訳(メタデータ) (2025-08-26T08:38:01Z) - Edge-Cloud Collaborative Computing on Distributed Intelligence and Model Optimization: A Survey [58.50944604905037]
エッジクラウドコラボレーティブコンピューティング(ECCC)は、現代のインテリジェントアプリケーションの計算要求に対処するための重要なパラダイムとして登場した。
AIの最近の進歩、特にディープラーニングと大規模言語モデル(LLM)は、これらの分散システムの能力を劇的に向上させてきた。
この調査は、基本的なアーキテクチャ、技術の実現、新しいアプリケーションに関する構造化されたチュートリアルを提供する。
論文 参考訳(メタデータ) (2025-05-03T13:55:38Z) - Model Agnostic Hybrid Sharding For Heterogeneous Distributed Inference [11.39873199479642]
Nesaは、分散AI推論用に設計されたモデルに依存しないシャーディングフレームワークを導入した。
私たちのフレームワークでは、ブロックチェーンベースのディープニューラルネットワークシャーディングを使用して、さまざまなノードネットワークに計算タスクを分散しています。
われわれの結果は、最先端のAI技術へのアクセスを民主化する可能性を強調している。
論文 参考訳(メタデータ) (2024-07-29T08:18:48Z) - Generative AI like ChatGPT in Blockchain Federated Learning: use cases, opportunities and future [4.497001527881303]
本研究は、フェデレーション学習における生成AIの潜在的な統合について検討する。
GAN(generative adversarial Network)とVAE(variantal autoencoder)
合成データの生成は、限られたデータ可用性に関連する課題に、フェデレートされた学習を支援する。
論文 参考訳(メタデータ) (2024-07-25T19:43:49Z) - FedSR: A Semi-Decentralized Federated Learning Algorithm for Non-IIDness in IoT System [2.040586739710704]
IoT(Industrial Internet of Things)では、大量のデータが毎日生成される。
プライバシーとセキュリティの問題により、これらのデータをまとめてディープラーニングモデルをトレーニングすることは困難である。
本稿では,集中型フェデレーション学習と分散型フェデレーション学習を組み合わせて,半分散型クラウドエッジデバイス階層型フェデレーション学習フレームワークを設計する。
論文 参考訳(メタデータ) (2024-03-19T09:34:01Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Coordination-free Decentralised Federated Learning on Complex Networks:
Overcoming Heterogeneity [2.6849848612544]
Federated Learning(FL)は、エッジコンピューティングシナリオで学習タスクを実行するためのフレームワークである。
本稿では,コミュニケーション効率のよい分散フェデレート学習(DFL)アルゴリズムを提案する。
我々のソリューションは、デバイスが直接隣人とのみ通信し、正確なモデルを訓練することを可能にする。
論文 参考訳(メタデータ) (2023-12-07T18:24:19Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
フェデレートドラーニング(FL)は、学習効率を改善し、AIGCのプライバシー保護を達成するために利用することができる。
我々は,AIGCの強化を目的としたFLベースの技術を提案し,ユーザが多様でパーソナライズされた高品質なコンテンツを作成できるようにすることを目的とする。
論文 参考訳(メタデータ) (2023-07-14T04:13:11Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
論文 参考訳(メタデータ) (2022-02-17T02:01:37Z) - Integrating Deep Learning in Domain Sciences at Exascale [2.241545093375334]
我々は,大規模HPCシステム上でディープラーニングモデルとアプリケーションを効率的に動作させるための既存パッケージの評価を行った。
本稿では,現在の大規模異種システムに対する新しい非同期並列化と最適化手法を提案する。
従来の計算集約型アプリケーションとデータ集約型アプリケーションをAIで拡張するための図表と潜在的なソリューションを提案する。
論文 参考訳(メタデータ) (2020-11-23T03:09:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。