論文の概要: Rethinking Vision Transformer Depth via Structural Reparameterization
- arxiv url: http://arxiv.org/abs/2511.19718v1
- Date: Mon, 24 Nov 2025 21:28:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-26 17:37:04.169653
- Title: Rethinking Vision Transformer Depth via Structural Reparameterization
- Title(参考訳): 構造的再パラメータ化による視覚変換器深さの再考
- Authors: Chengwei Zhou, Vipin Chaudhary, Gourav Datta,
- Abstract要約: 本稿では,訓練期間中に機能する分岐型構造パラメータ化手法を提案する。
提案手法では, 変圧器ブロック内の並列分岐を利用して, 合理化シングルパスモデルに体系的に統合する。
ViT-Tinyに適用した場合、このフレームワークは、ImageNet-1Kの分類精度を維持しながら、元の12層アーキテクチャを6層、4層、もしくは3層に改善する。
- 参考スコア(独自算出の注目度): 16.12815682992294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The computational overhead of Vision Transformers in practice stems fundamentally from their deep architectures, yet existing acceleration strategies have primarily targeted algorithmic-level optimizations such as token pruning and attention speedup. This leaves an underexplored research question: can we reduce the number of stacked transformer layers while maintaining comparable representational capacity? To answer this, we propose a branch-based structural reparameterization technique that operates during the training phase. Our approach leverages parallel branches within transformer blocks that can be systematically consolidated into streamlined single-path models suitable for inference deployment. The consolidation mechanism works by gradually merging branches at the entry points of nonlinear components, enabling both feed-forward networks (FFN) and multi-head self-attention (MHSA) modules to undergo exact mathematical reparameterization without inducing approximation errors at test time. When applied to ViT-Tiny, the framework successfully reduces the original 12-layer architecture to 6, 4, or as few as 3 layers while maintaining classification accuracy on ImageNet-1K. The resulting compressed models achieve inference speedups of up to 37% on mobile CPU platforms. Our findings suggest that the conventional wisdom favoring extremely deep transformer stacks may be unnecessarily restrictive, and point toward new opportunities for constructing efficient vision transformers.
- Abstract(参考訳): 実際のビジョントランスフォーマーの計算オーバーヘッドは、基本的にその深いアーキテクチャに由来するが、既存の加速度戦略は主にトークンプルーニングやアテンションスピードアップといったアルゴリズムレベルの最適化を目標としている。
比較可能な表現能力を維持しながら、積み重ねられたトランスフォーマー層数を削減できるだろうか?
そこで本研究では,トレーニング期間中に機能する分岐型構造パラメータ化手法を提案する。
提案手法では,変圧器ブロック内の並列分岐を利用して,推論配置に適した合理化単一パスモデルに体系的に統合する。
この統合機構は、非線形成分のエントリーポイントの枝を徐々に融合させ、フィードフォワード・ネットワーク(FFN)とマルチヘッド・セルフアテンション(MHSA)モジュールの両方が、テスト時に近似誤差を誘導することなく正確な数学的パラメータ化を行うことを可能にする。
ViT-Tinyに適用した場合、このフレームワークは、ImageNet-1Kの分類精度を維持しながら、元の12層アーキテクチャを6層、4層、もしくは3層に改善する。
その結果、圧縮されたモデルは、モバイルCPUプラットフォーム上で最大37%の推論スピードアップを達成する。
この結果から,超深層変圧器スタックを好む従来の知恵は必然的に制限され,効率的な視覚変換器を構築する新たな機会に向けられている可能性が示唆された。
関連論文リスト
- Pieceformer: Similarity-Driven Knowledge Transfer via Scalable Graph Transformer in VLSI [10.727382706747592]
Pieceformerはスケーラブルで自己管理型の類似性評価フレームワークである。
平均絶対誤差(MAE)を24.9%削減する。
すべての実世界のデザイングループを正しくクラスタ化する唯一の方法である。
論文 参考訳(メタデータ) (2025-06-18T22:47:09Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
モデルバイナライゼーションは畳み込みニューラルネットワーク(CNN)のリアルタイムおよびエネルギー効率の計算を可能にした。
本稿では,バイナライズフレンドリーなハイブリッドViTアーキテクチャであるBHViTとそのバイナライズモデルを提案する。
提案アルゴリズムは,バイナリ ViT 手法間でSOTA 性能を実現する。
論文 参考訳(メタデータ) (2025-03-04T08:35:01Z) - PointMT: Efficient Point Cloud Analysis with Hybrid MLP-Transformer Architecture [46.266960248570086]
本研究は,効率的な特徴集約のための複雑局所的注意機構を導入することで,自己注意機構の二次的複雑さに取り組む。
また,各チャネルの注目重量分布を適応的に調整するパラメータフリーチャネル温度適応機構を導入する。
我々は,PointMTが性能と精度の最適なバランスを維持しつつ,最先端手法に匹敵する性能を実現することを示す。
論文 参考訳(メタデータ) (2024-08-10T10:16:03Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Global Vision Transformer Pruning with Hessian-Aware Saliency [93.33895899995224]
この研究はヴィジュアルトランスフォーマー(ViT)モデルの共通設計哲学に挑戦する。
遅延を意識した規則化による直接遅延低減を実現し,すべての層や構造に匹敵する新しいヘッセン型構造解析基準を導出する。
DeiT-Baseモデルで反復的なプルーニングを実行すると、NViT(Novel ViT)と呼ばれる新しいアーキテクチャファミリが生まれ、パラメータをより効率的に利用する新しいパラメータが現れる。
論文 参考訳(メタデータ) (2021-10-10T18:04:59Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
本稿では, 密結合型畳み込み変換器(TCCT)と3つのTCCTアーキテクチャを提案する。
実世界のデータセットに対する我々の実験は、我々のTCCTアーキテクチャが既存の最先端トランスフォーマーモデルの性能を大幅に改善できることを示している。
論文 参考訳(メタデータ) (2021-08-29T08:49:31Z) - Augmented Shortcuts for Vision Transformers [49.70151144700589]
視覚変換器モデルにおけるショートカットと特徴の多様性の関係について検討する。
本稿では,元のショートカットに並列に学習可能なパラメータを追加経路を挿入する拡張ショートカット方式を提案する。
ベンチマークデータセットを用いて実験を行い,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2021-06-30T09:48:30Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
注意の少ないvIsion Transformerは、畳み込み、完全接続層、自己アテンションが、画像パッチシーケンスを処理するためにほぼ同等な数学的表現を持つという事実に基づいている。
提案したLITは、画像分類、オブジェクト検出、インスタンス分割を含む画像認識タスクにおいて有望な性能を達成する。
論文 参考訳(メタデータ) (2021-05-29T05:26:07Z) - Incorporating Convolution Designs into Visual Transformers [24.562955955312187]
我々は、低レベル特徴抽出におけるCNNの利点、局所性の向上、長距離依存の確立におけるトランスフォーマーの利点を組み合わせた新しいtextbfConvolution-enhanced image Transformer (CeiT) を提案する。
ImageNetと7つの下流タスクの実験結果は、大量のトレーニングデータや追加のCNN教師を必要とすることなく、従来のトランスフォーマーや最先端CNNと比較してCeiTの有効性と一般化能力を示している。
論文 参考訳(メタデータ) (2021-03-22T13:16:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。