論文の概要: TaCo: Capturing Spatio-Temporal Semantic Consistency in Remote Sensing Change Detection
- arxiv url: http://arxiv.org/abs/2511.20306v1
- Date: Tue, 25 Nov 2025 13:44:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-26 17:37:04.484092
- Title: TaCo: Capturing Spatio-Temporal Semantic Consistency in Remote Sensing Change Detection
- Title(参考訳): TaCo:リモートセンシング変化検出における時空間セマンティック一貫性のキャプチャ
- Authors: Han Guo, Chenyang Liu, Haotian Zhang, Bowen Chen, Zhengxia Zou, Zhenwei Shi,
- Abstract要約: Ta-Coは時間的意味遷移のための一貫したセマンティックネットワークである。
我々は,Ta-Coがリモートセンシング検出タスクにおいて一貫したSOTA性能を実現することを示す。
この設計は推論中に余分な計算オーバーヘッドを伴わずにかなりの利得を得ることができる。
- 参考スコア(独自算出の注目度): 54.22717266034045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing change detection (RSCD) aims to identify surface changes across bi-temporal satellite images. Most previous methods rely solely on mask supervision, which effectively guides spatial localization but provides limited constraints on the temporal semantic transitions. Consequently, they often produce spatially coherent predictions while still suffering from unresolved semantic inconsistencies. To address this limitation, we propose TaCo, a spatio-temporal semantic consistent network, which enriches the existing mask-supervised framework with a spatio-temporal semantic joint constraint. TaCo conceptualizes change as a semantic transition between bi-temporal states, in which one temporal feature representation can be derived from the other via dedicated transition features. To realize this, we introduce a Text-guided Transition Generator that integrates textual semantics with bi-temporal visual features to construct the cross-temporal transition features. In addition, we propose a spatio-temporal semantic joint constraint consisting of bi-temporal reconstruct constraints and a transition constraint: the former enforces alignment between reconstructed and original features, while the latter enhances discrimination for changes. This design can yield substantial performance gains without introducing any additional computational overhead during inference. Extensive experiments on six public datasets, spanning both binary and semantic change detection tasks, demonstrate that TaCo consistently achieves SOTA performance.
- Abstract(参考訳): リモートセンシング変化検出(RSCD)は、両時間衛星画像間での表面変化を特定することを目的としている。
従来の手法のほとんどはマスクの監督にのみ依存しており、空間的局所化を効果的に導くが、時間的意味的遷移に制限を与える。
結果として、しばしば、未解決の意味的不整合に悩まされながら、空間的に一貫性のある予測を生成する。
この制限に対処するため,時空間意味整合性ネットワークであるTaCoを提案する。
TaCoは、変化をバイテンポラル状態間の意味的遷移として概念化し、一方の時間的特徴表現は専用の遷移特徴を通して他方から引き出すことができる。
これを実現するために,テキストのセマンティクスとバイテンポラルな視覚的特徴を統合したテキスト誘導遷移生成器を導入する。
さらに、両時間的再構成制約と遷移制約からなる時空間的意味的関節制約を提案し、前者は再構成された特徴と元の特徴のアライメントを強制し、後者は変更の識別を強化する。
この設計は、推論中に追加の計算オーバーヘッドを導入することなく、大幅な性能向上をもたらすことができる。
バイナリとセマンティックな変更検出タスクにまたがる6つの公開データセットに関する大規模な実験は、TaCoが一貫してSOTAパフォーマンスを達成することを実証している。
関連論文リスト
- Identity-Preserving Text-to-Video Generation Guided by Simple yet Effective Spatial-Temporal Decoupled Representations [131.33758144860988]
アイデンティティ保存型テキスト・ツー・ビデオ(IPT2V)生成は、一貫した人間のアイデンティティを持つ高忠実度ビデオを作成することを目的としている。
現在のエンドツーエンドフレームワークは、重要な空間的・時間的トレードオフを被る。
本稿では,表現をレイアウトの空間的特徴と運動力学の時間的特徴に分解する,シンプルで効果的な空間時空間分離フレームワークを提案する。
論文 参考訳(メタデータ) (2025-07-07T06:54:44Z) - A Late-Stage Bitemporal Feature Fusion Network for Semantic Change Detection [32.112311027857636]
そこで本研究では,意味変化検出の課題に対処するため,新しい2段階の時間的特徴融合ネットワークを提案する。
具体的には,特徴融合を強化するため,局所的グローバルアテンショナルアグリゲーションモジュールを提案し,重要なセマンティクスを強調するために,局所的グローバルなコンテキスト拡張モジュールを提案する。
提案モデルにより,両データセットの最先端性能が向上する。
論文 参考訳(メタデータ) (2024-06-15T16:02:10Z) - Unified Domain Adaptive Semantic Segmentation [105.05235403072021]
Unsupervised Adaptive Domain Semantic (UDA-SS)は、ラベル付きソースドメインからラベル付きターゲットドメインに監督を移すことを目的としている。
本稿では,特徴量と特徴量との相違に対処するQuad-directional Mixup(QuadMix)法を提案する。
提案手法は,4つの挑戦的UDA-SSベンチマークにおいて,最先端の成果を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2023-11-22T09:18:49Z) - Joint Spatio-Temporal Modeling for the Semantic Change Detection in
Remote Sensing Images [22.72105435238235]
両時間RSI間の「から」意味遷移を明示的にモデル化するための意味変化(SCanFormer)を提案する。
次に,SCDタスクに忠実な Transformer 時間制約を活用する意味学習手法を導入し,意味変化の学習を指導する。
結果として得られたネットワーク(SCanNet)は、決定的意味変化の検出と、得られた両時間的結果のセマンティック一貫性の両方において、ベースライン法より優れている。
論文 参考訳(メタデータ) (2022-12-10T08:49:19Z) - Spatiotemporal Multi-scale Bilateral Motion Network for Gait Recognition [3.1240043488226967]
本稿では,光学的流れに動機づけられた両動方向の特徴について述べる。
動作コンテキストを多段階の時間分解能でリッチに記述する多段階の時間表現を開発する。
論文 参考訳(メタデータ) (2022-09-26T01:36:22Z) - Bi-Temporal Semantic Reasoning for the Semantic Change Detection of HR
Remote Sensing Images [17.53683781109742]
意味変化検出(SCD)のための新しいCNNアーキテクチャを提案する。
このアーキテクチャについて詳述し、両時間的意味的相関をモデル化する。
Bi-SRNet(Bi-temporal Semantic Reasoning Network)は2種類の意味的推論ブロックを含んでおり、時間的および時間的両方の意味的相関を推論する。
論文 参考訳(メタデータ) (2021-08-13T07:28:09Z) - Weakly Supervised Temporal Adjacent Network for Language Grounding [96.09453060585497]
本稿では,時間的言語接地のための新しい教師付き時間的隣接ネットワーク(WSTAN)を提案する。
WSTANは、複数のインスタンス学習(MIL)パラダイムにおいて、時間的隣接ネットワークを活用することで、モーダル間のセマンティックアライメントを学習する。
MILブランチと補完ブランチの両方で、自己監督による意味的識別を強化するために、追加の自己識別損失が考案された。
論文 参考訳(メタデータ) (2021-06-30T15:42:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。