論文の概要: A Probabilistic Framework for Temporal Distribution Generalization in Industry-Scale Recommender Systems
- arxiv url: http://arxiv.org/abs/2511.21032v1
- Date: Wed, 26 Nov 2025 04:02:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:58.955452
- Title: A Probabilistic Framework for Temporal Distribution Generalization in Industry-Scale Recommender Systems
- Title(参考訳): 大規模レコメンダシステムにおける時間分布一般化のための確率的枠組み
- Authors: Yuxuan Zhu, Cong Fu, Yabo Ni, Anxiang Zeng, Yuan Fang,
- Abstract要約: 時間分布シフトは、推奨システムの長期的な精度を損なう。
本稿では,産業規模のインクリメンタル学習パイプラインにシームレスに統合する確率的フレームワークを提案する。
本手法は時間的一般化に優れ,ユーザ当たりのGMVは2.33%上昇する。
- 参考スコア(独自算出の注目度): 14.592975643628188
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal distribution shift (TDS) erodes the long-term accuracy of recommender systems, yet industrial practice still relies on periodic incremental training, which struggles to capture both stable and transient patterns. Existing approaches such as invariant learning and self-supervised learning offer partial solutions but often suffer from unstable temporal generalization, representation collapse, or inefficient data utilization. To address these limitations, we propose ELBO$_\text{TDS}$, a probabilistic framework that integrates seamlessly into industry-scale incremental learning pipelines. First, we identify key shifting factors through statistical analysis of real-world production data and design a simple yet effective data augmentation strategy that resamples these time-varying factors to extend the training support. Second, to harness the benefits of this extended distribution while preventing representation collapse, we model the temporal recommendation scenario using a causal graph and derive a self-supervised variational objective, ELBO$_\text{TDS}$, grounded in the causal structure. Extensive experiments supported by both theoretical and empirical analysis demonstrate that our method achieves superior temporal generalization, yielding a 2.33\% uplift in GMV per user and has been successfully deployed in Shopee Product Search. Code is available at https://github.com/FuCongResearchSquad/ELBO4TDS.
- Abstract(参考訳): 時間分布シフト(TDS)は、リコメンダシステムの長期的な精度を損なうが、産業的実践は、安定パターンと過渡パターンの両方を捉えるのに苦慮している定期的な漸進的トレーニングに依存している。
不変学習や自己教師付き学習のような既存のアプローチは部分解を提供するが、しばしば不安定な時間的一般化、表現の崩壊、あるいは非効率的なデータ利用に悩まされる。
これらの制限に対処するため,ELBO$_\text{TDS}$を提案し,業界規模のインクリメンタル学習パイプラインにシームレスに統合する確率的フレームワークを提案する。
まず、実世界の生産データを統計的に分析し、これらの時間変化要因を再サンプリングしてトレーニング支援を拡張する単純なデータ拡張戦略を設計する。
第二に、この拡張分布の利点を利用して表現の崩壊を防止し、因果グラフを用いて時間的推薦シナリオをモデル化し、因果構造を基盤とした自己教師付き変分目的 ELBO$_\text{TDS}$ を導出する。
理論的および経験的分析の両方で支持された広範囲な実験により,提案手法は時間的一般化に優れ,ユーザ毎のGMVは2.33 %上昇し,買い物商品探索に成功していることが示された。
コードはhttps://github.com/FuCongResearchSquad/ELBO4TDSで入手できる。
関連論文リスト
- Modeling Uncertainty Trends for Timely Retrieval in Dynamic RAG [35.96258615258145]
本稿では,トークンレベルの不確実性のダイナミクスをモデル化し,最適検索タイミングを決定するトレーニングフリーな手法であるEntropy-Trend Constraint(ETC)を紹介する。
ETCは、検索周波数を減少させながら、強いベースラインを一貫して上回る。
プラグアンドプレイで、モデルに依存しず、既存のデコードパイプラインに簡単に統合できる。
論文 参考訳(メタデータ) (2025-11-13T05:28:02Z) - Sequential Data Augmentation for Generative Recommendation [54.765568804267645]
生成的レコメンデーションはパーソナライズされたシステムにおいて重要な役割を担い、ユーザの将来のインタラクションを過去の行動シーケンスから予測する。
データ拡張(Data augmentation)は、ユーザインタラクション履歴からトレーニングデータを構築するプロセスである。
我々は、サンプリングプロセスとして拡張をモデル化し、その結果のトレーニング分布の柔軟な制御を可能にする、原則化されたフレームワークであるGenPASを提案する。
ベンチマークと産業データセットを用いた実験により、GenPASは既存の戦略よりも精度、データ効率、パラメータ効率が優れていることが示された。
論文 参考訳(メタデータ) (2025-09-17T02:53:25Z) - SEVA: Leveraging Single-Step Ensemble of Vicinal Augmentations for Test-Time Adaptation [29.441669360316418]
テスト時間適応(TTA)は、推論中の迅速なモデル適応を通じて、分散シフトに対するモデルロバスト性を高めることを目的としている。
拡張戦略は、信頼性のあるサンプルの可能性を効果的に解き放つことができるが、急速に増大する計算コストは、彼らのリアルタイムアプリケーションを妨げる。
本稿では, 計算負担を増大させることなく, データの増大を生かして, 新たなTTAアプローチであるSingle-step Ensemble of Vicinal Augmentations(SEVA)を提案する。
論文 参考訳(メタデータ) (2025-05-07T02:58:37Z) - Understanding the Limits of Deep Tabular Methods with Temporal Shift [28.738848567072004]
本稿では,Fourier級数展開に基づく時間的組込み手法を提案し,時間的パターンを学習し,組み込む。
我々の実験は、この時間的埋め込みと改良されたトレーニングプロトコルを組み合わせることで、時間的データから学習するためのより効果的で堅牢なフレームワークが提供されることを示した。
論文 参考訳(メタデータ) (2025-02-27T16:48:53Z) - Generative Regression Based Watch Time Prediction for Short-Video Recommendation [36.95095097454143]
短いビデオレコメンデーションシステムでは、時計の時間予測が重要なタスクとして現れている。
最近の研究は、連続時計時間推定を正規回帰タスクに変換することによって、これらの問題に対処しようとしている。
本稿では,WTPをシーケンス生成タスクとして再構成する新しい生成回帰(GR)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-28T16:48:55Z) - Bridging SFT and DPO for Diffusion Model Alignment with Self-Sampling Preference Optimization [67.8738082040299]
自己サンプリング優先最適化(SSPO)は,訓練後強化学習のための新しいアライメント手法である。
SSPOは、SFTのトレーニング安定性を維持しながら、ペアデータと報酬モデルの必要性を排除する。
SSPOは、テキスト・ツー・イメージベンチマークにおける以前のアプローチを全て上回り、テキスト・ツー・ビデオベンチマークにおける優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-10-07T17:56:53Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
モデルの新しい設計に基づく新しい生成フレームワークであるKoopman VAEを紹介する。
クープマン理論に触発され、線形写像を用いて潜在条件事前力学を表現する。
KoVAEは、いくつかの挑戦的な合成および実世界の時系列生成ベンチマークにおいて、最先端のGANおよびVAEメソッドより優れている。
論文 参考訳(メタデータ) (2023-10-04T07:14:43Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Towards Flexible Time-to-event Modeling: Optimizing Neural Networks via
Rank Regression [17.684526928033065]
我々はDART(Time-to-event Prediction)のためのDeep AFT Rank-regressionモデルを導入する。
このモデルは、表現学習において効率的で信頼性の高いゲハンのランク統計に基づく客観的関数を用いる。
提案手法は, 生存時間分布に分布仮定を課さない半パラメトリックなAFTモデリング手法である。
論文 参考訳(メタデータ) (2023-07-16T13:58:28Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
本稿では,ベイズ最適化における最先端確率変換器の適用可能性について検討する。
トレーニング手順と損失定義から生じる2つの欠点を観察し、ブラックボックス最適化のプロキシとして直接デプロイすることを妨げる。
1)非一様分散点を前処理するBO調整トレーニング,2)予測性能を向上させるために最適な定常点をフィルタする新しい近似後正則整定器トレードオフ精度と入力感度を導入する。
論文 参考訳(メタデータ) (2022-05-27T11:13:17Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。