論文の概要: E-M3RF: An Equivariant Multimodal 3D Re-assembly Framework
- arxiv url: http://arxiv.org/abs/2511.21422v1
- Date: Wed, 26 Nov 2025 14:12:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-11-27 18:37:59.136836
- Title: E-M3RF: An Equivariant Multimodal 3D Re-assembly Framework
- Title(参考訳): E-M3RF: 等価なマルチモーダル3D再構成フレームワーク
- Authors: Adeela Islam, Stefano Fiorini, Manuel Lecha, Theodore Tsesmelis, Stuart James, Pietro Morerio, Alessio Del Bue,
- Abstract要約: 等価なマルチモーダル3D再構成フレームワークであるE-M3RFを導入する。
点雲の入力として受け取り、点の位置と破折した破片の色の両方を含む。
SE(3)フローマッチングを使用してそれらを再組み立てするために必要な変換を予測する。
- 参考スコア(独自算出の注目度): 27.41911469078165
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: 3D reassembly is a fundamental geometric problem, and in recent years it has increasingly been challenged by deep learning methods rather than classical optimization. While learning approaches have shown promising results, most still rely primarily on geometric features to assemble a whole from its parts. As a result, methods struggle when geometry alone is insufficient or ambiguous, for example, for small, eroded, or symmetric fragments. Additionally, solutions do not impose physical constraints that explicitly prevent overlapping assemblies. To address these limitations, we introduce E-M3RF, an equivariant multimodal 3D reassembly framework that takes as input the point clouds, containing both point positions and colors of fractured fragments, and predicts the transformations required to reassemble them using SE(3) flow matching. Each fragment is represented by both geometric and color features: i) 3D point positions are encoded as rotationconsistent geometric features using a rotation-equivariant encoder, ii) the colors at each 3D point are encoded with a transformer. The two feature sets are then combined to form a multimodal representation. We experimented on four datasets: two synthetic datasets, Breaking Bad and Fantastic Breaks, and two real-world cultural heritage datasets, RePAIR and Presious, demonstrating that E-M3RF on the RePAIR dataset reduces rotation error by 23.1% and translation error by 13.2%, while Chamfer Distance decreases by 18.4% compared to competing methods.
- Abstract(参考訳): 3D再組み立ては基本的な幾何学的問題であり、近年は古典的な最適化よりも深層学習法に挑戦されている。
学習アプローチは有望な結果を示しているが、ほとんどの場合、その部分から全体を組み立てるための幾何学的特徴に依存している。
その結果、例えば、小さな、浸食された、対称的な断片に対して、幾何学単独が不十分または曖昧であるときに、メソッドは苦労する。
さらに、解は重なり合うアセンブリを明示的に阻止する物理的制約を課さない。
これらの制約に対処するため、E-M3RFは、点雲を入力として、破壊断片の点位置と色の両方を包含し、SE(3)フローマッチングを用いてそれらを再組み立てするために必要な変換を予測する。
各フラグメントは、幾何学的特徴と色の特徴の両方で表される。
一 回転同変エンコーダを用いて、3次元点位置を回転整合幾何学的特徴として符号化する。
二 各3D点の色を変圧器で符号化する。
2つの特徴集合が組み合わされ、マルチモーダル表現を形成する。
RePAIRデータセット上のE-M3RFはローテーションエラーを23.1%削減し、翻訳エラーを13.2%削減し、Chamfer Distanceは競合する手法と比較して18.4%減少することを示した。
関連論文リスト
- Seeing 3D Through 2D Lenses: 3D Few-Shot Class-Incremental Learning via Cross-Modal Geometric Rectification [59.17489431187807]
本稿では,CLIPの階層的空間意味論を活用することで3次元幾何学的忠実度を高めるフレームワークを提案する。
本手法は3次元のクラスインクリメンタル学習を著しく改善し,テクスチャバイアスに対して優れた幾何コヒーレンスとロバスト性を実現する。
論文 参考訳(メタデータ) (2025-09-18T13:45:08Z) - DiMeR: Disentangled Mesh Reconstruction Model [29.827345186012558]
DiMeRは、疎視メッシュ再構成のための3次元監視を備えた、幾何学的・テクスチュアなアンタングルフィードフォワードモデルである。
性能/コストの低いモジュールを排除し,正規化損失を再設計し,メッシュ抽出のアルゴリズムを効率化する。
大規模な実験により、DiMeRはスパースビュー、シングルイメージ、テキストから3Dタスクにまたがって一般化し、ベースラインを一貫して上回ることを示した。
論文 参考訳(メタデータ) (2025-04-24T15:39:20Z) - RAFaRe: Learning Robust and Accurate Non-parametric 3D Face
Reconstruction from Pseudo 2D&3D Pairs [13.11105614044699]
単視3次元顔再構成(SVFR)のための頑健で正確な非パラメトリック手法を提案する。
大規模な擬似2D&3Dデータセットは、まず詳細な3D顔をレンダリングし、野生の画像の顔と描画された顔とを交換することによって作成される。
本モデルは,FaceScape-wild/labおよびMICCベンチマークにおいて,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-10T19:40:26Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - Geometry-Contrastive Transformer for Generalized 3D Pose Transfer [95.56457218144983]
この研究の直感は、与えられたメッシュ間の幾何学的不整合を強力な自己認識機構で知覚することである。
本研究では,グローバルな幾何学的不整合に対する3次元構造的知覚能力を有する新しい幾何学コントラスト変換器を提案する。
本稿では, クロスデータセット3次元ポーズ伝達タスクのための半合成データセットとともに, 潜時等尺正則化モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-14T13:14:24Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
3次元画像処理のためのGDANet(Geometry-Disentangled Attention Network)を提案する。
GDANetは、点雲を3Dオブジェクトの輪郭と平らな部分に切り離し、それぞれ鋭い変化成分と穏やかな変化成分で表される。
3Dオブジェクトの分類とセグメンテーションベンチマークの実験は、GDANetがより少ないパラメータで最先端の処理を実現していることを示している。
論文 参考訳(メタデータ) (2020-12-20T13:35:00Z) - Recurrent Multi-view Alignment Network for Unsupervised Surface
Registration [79.72086524370819]
非厳格な登録をエンドツーエンドで学習することは、本質的に高い自由度とラベル付きトレーニングデータの欠如により困難である。
我々は、いくつかの剛性変換のポイントワイドな組み合わせで、非剛性変換を表現することを提案する。
また,投影された多視点2次元深度画像上での3次元形状の類似度を計測する可微分損失関数も導入する。
論文 参考訳(メタデータ) (2020-11-24T14:22:42Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) は連続的な出力を提供し、複数のトポロジを扱える。
IF-NetsはShapeNetにおける3次元オブジェクト再構成における先行作業よりも明らかに優れており、より正確な3次元人間の再構成が得られる。
論文 参考訳(メタデータ) (2020-03-03T11:14:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。