論文の概要: DiMeR: Disentangled Mesh Reconstruction Model
- arxiv url: http://arxiv.org/abs/2504.17670v2
- Date: Mon, 26 May 2025 09:08:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-27 14:32:54.355312
- Title: DiMeR: Disentangled Mesh Reconstruction Model
- Title(参考訳): DiMeR:アンタングルメッシュ再構成モデル
- Authors: Lutao Jiang, Jiantao Lin, Kanghao Chen, Wenhang Ge, Xin Yang, Yifan Jiang, Yuanhuiyi Lyu, Xu Zheng, Yinchuan Li, Yingcong Chen,
- Abstract要約: DiMeRは、疎視メッシュ再構成のための3次元監視を備えた、幾何学的・テクスチュアなアンタングルフィードフォワードモデルである。
性能/コストの低いモジュールを排除し,正規化損失を再設計し,メッシュ抽出のアルゴリズムを効率化する。
大規模な実験により、DiMeRはスパースビュー、シングルイメージ、テキストから3Dタスクにまたがって一般化し、ベースラインを一貫して上回ることを示した。
- 参考スコア(独自算出の注目度): 29.827345186012558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose DiMeR, a novel geometry-texture disentangled feed-forward model with 3D supervision for sparse-view mesh reconstruction. Existing methods confront two persistent obstacles: (i) textures can conceal geometric errors, i.e., visually plausible images can be rendered even with wrong geometry, producing multiple ambiguous optimization objectives in geometry-texture mixed solution space for similar objects; and (ii) prevailing mesh extraction methods are redundant, unstable, and lack 3D supervision. To solve these challenges, we rethink the inductive bias for mesh reconstruction. First, we disentangle the unified geometry-texture solution space, where a single input admits multiple feasible solutions, into geometry and texture spaces individually. Specifically, given that normal maps are strictly consistent with geometry and accurately capture surface variations, the normal maps serve as the sole input for geometry prediction in DiMeR, while the texture is estimated from RGB images. Second, we streamline the algorithm of mesh extraction by eliminating modules with low performance/cost ratios and redesigning regularization losses with 3D supervision. Notably, DiMeR still accepts raw RGB images as input by leveraging foundation models for normal prediction. Extensive experiments demonstrate that DiMeR generalises across sparse-view-, single-image-, and text-to-3D tasks, consistently outperforming baselines. On the GSO and OmniObject3D datasets, DiMeR significantly reduces Chamfer Distance by more than 30%.
- Abstract(参考訳): 疎視メッシュ再構成のための3次元教師付きジオメトリー・テクスチュア・アンタングルフィードフォワードモデルであるDiMeRを提案する。
既存の方法は2つの永続的障害に直面します。
i)テクスチャは、幾何学的誤りを隠蔽し、すなわち、間違った幾何学でも視覚的に可視な画像を描画することができ、類似した対象に対して幾何学的・テクスチャ混合解空間において複数の曖昧な最適化目標を導出することができる。
(II)メッシュ抽出法は冗長であり,不安定であり,3次元監視が欠如している。
これらの課題を解決するため、メッシュ再構築における帰納バイアスを再考する。
まず、一つの入力が複数の実現可能な解を持つような統合幾何-テクスチャ解空間を、幾何学空間とテクスチャ空間に個別に分割する。
具体的には、通常の地図が幾何と厳密に整合し、表面の変動を正確に捉えることを考えると、通常の地図はDMeRの幾何学的予測のための唯一の入力として機能し、テクスチャはRGB画像から推定される。
第2に、性能/コストの低いモジュールを排除し、正規化損失を再設計し、3次元監視を行うことでメッシュ抽出のアルゴリズムを合理化する。
特にDiMeRは、通常の予測に基礎モデルを活用することで、生のRGB画像を入力として受け付けている。
大規模な実験により、DiMeRはスパースビュー、シングルイメージ、テキストから3Dタスクにまたがって一般化し、ベースラインを一貫して上回ることを示した。
GSOとOmniObject3Dデータセットでは、DiMeRはChamfer Distanceを30%以上削減する。
関連論文リスト
- Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
大空間モデル(LSM)は、RGB画像を直接意味的放射場に処理する。
LSMは、単一のフィードフォワード操作における幾何学、外観、意味を同時に推定する。
新しい視点で言語と対話することで、多目的ラベルマップを生成することができる。
論文 参考訳(メタデータ) (2024-10-24T17:54:42Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
GeoLRM(Geometry-Aware Large Restruction Model)は、512kガウスと21の入力画像で11GBのGPUメモリで高品質な資産を予測できる手法である。
従来の作品では、3D構造の本質的な空間性は無視されており、3D画像と2D画像の間の明示的な幾何学的関係は利用されていない。
GeoLRMは、3Dポイントを直接処理し、変形可能なクロスアテンション機構を使用する新しい3D対応トランスフォーマー構造を導入することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2024-06-21T17:49:31Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
マルチビュー(MV)3次元再構成は,生成したMV画像を一貫した3次元オブジェクトに融合させる,有望なソリューションである。
しかし、生成された画像は、通常、一貫性のない照明、不整合幾何学、スパースビューに悩まされ、復元の質が低下する。
本稿では, 内在的分解誘導, 過渡的モノ先行誘導, および3つの問題に対処するための視認性向上を活用する新しい3次元再構成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T02:30:31Z) - Weakly-Supervised 3D Reconstruction of Clothed Humans via Normal Maps [1.6462601662291156]
そこで本研究では,2次元正規地図を用いた布地人の3次元再構築のための新しい深層学習手法を提案する。
一つのRGB画像またはマルチビュー画像から、我々のネットワークは、静止ポーズで体を囲む四面体メッシュ上で識別された符号付き距離関数(SDF)を推定する。
ネットワーク推論と3次元再構成の両方に対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-27T18:06:35Z) - Sampling is Matter: Point-guided 3D Human Mesh Reconstruction [0.0]
本稿では,1枚のRGB画像から3次元メッシュ再構成を行うための簡易かつ強力な手法を提案する。
評価実験の結果,提案手法は3次元メッシュ再構成の性能を効率よく向上することが示された。
論文 参考訳(メタデータ) (2023-04-19T08:45:26Z) - Single-view 3D Mesh Reconstruction for Seen and Unseen Categories [69.29406107513621]
シングルビュー3Dメッシュ再構成は、シングルビューRGB画像から3D形状を復元することを目的とした、基本的なコンピュータビジョンタスクである。
本稿では,一視点3Dメッシュ再構成に取り組み,未知のカテゴリのモデル一般化について検討する。
我々は、再構築におけるカテゴリ境界を断ち切るために、エンドツーエンドの2段階ネットワークであるGenMeshを提案する。
論文 参考訳(メタデータ) (2022-08-04T14:13:35Z) - Monocular 3D Object Reconstruction with GAN Inversion [122.96094885939146]
MeshInversionはテクスチャ化された3Dメッシュの再構築を改善するための新しいフレームワークである。
これは、3Dテクスチャメッシュ合成のために事前訓練された3D GANの生成前を利用する。
本フレームワークは,観察部と観察部の両方で一貫した形状とテクスチャを有する忠実な3次元再構成を実現する。
論文 参考訳(メタデータ) (2022-07-20T17:47:22Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3Dモーフィブルモデル(3DMM)の適合性は、その強力な3D先行性のため、顔解析に広く有用である。
以前に再建された3次元顔は、微細な形状が失われるため、視差の低下に悩まされていた。
本論文は, パーソナライズされた形状が対応する人物と同一に見えるよう, パーソナライズされた形状を捉えるための完全な解を提案する。
論文 参考訳(メタデータ) (2022-04-09T03:46:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。