論文の概要: Flowing Backwards: Improving Normalizing Flows via Reverse Representation Alignment
- arxiv url: http://arxiv.org/abs/2511.22345v1
- Date: Thu, 27 Nov 2025 11:35:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.538251
- Title: Flowing Backwards: Improving Normalizing Flows via Reverse Representation Alignment
- Title(参考訳): 逆表現アライメントによる正規化フローの改善
- Authors: Yang Chen, Xiaowei Xu, Shuai Wang, Chenhui Zhu, Ruxue Wen, Xubin Li, Tiezheng Ge, Limin Wang,
- Abstract要約: 正規化フロー(NF)のための新しいアライメント戦略を提案する。
フォワードパスを正規化する代わりに、生成的(逆)パスの中間的特徴と強力な視覚基盤モデルからの表現とを一致させる。
また,NFの組込みセマンティック知識のより内在的な評価を提供する,新しい学習自由なテスト時間最適化アルゴリズムを導入する。
- 参考スコア(独自算出の注目度): 27.988711627938276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Normalizing Flows (NFs) are a class of generative models distinguished by a mathematically invertible architecture, where the forward pass transforms data into a latent space for density estimation, and the reverse pass generates new samples from this space. This characteristic creates an intrinsic synergy between representation learning and data generation. However, the generative quality of standard NFs is limited by poor semantic representations from log-likelihood optimization. To remedy this, we propose a novel alignment strategy that creatively leverages the invertibility of NFs: instead of regularizing the forward pass, we align the intermediate features of the generative (reverse) pass with representations from a powerful vision foundation model, demonstrating superior effectiveness over naive alignment. We also introduce a novel training-free, test-time optimization algorithm for classification, which provides a more intrinsic evaluation of the NF's embedded semantic knowledge. Comprehensive experiments demonstrate that our approach accelerates the training of NFs by over 3.3$\times$, while simultaneously delivering significant improvements in both generative quality and classification accuracy. New state-of-the-art results for NFs are established on ImageNet 64$\times$64 and 256$\times$256. Our code is available at https://github.com/MCG-NJU/FlowBack.
- Abstract(参考訳): 正規化フロー(英: Normalizing Flows、NFs)は、数学的に可逆的なアーキテクチャによって区別される生成モデルのクラスであり、フォワードパスはデータを密度推定のために潜在空間に変換し、逆パスはこの空間から新しいサンプルを生成する。
この特徴は、表現学習とデータ生成の間に固有のシナジーを生み出す。
しかし、標準的なNFの生成品質は、ログ類似度最適化のセマンティック表現の貧弱さによって制限される。
そこで我々は,NFの非可逆性を創造的に活用する新たなアライメント戦略を提案し,前向きパスを正規化するのではなく,生成(逆)パスの中間的特徴を強力なビジョン基盤モデルからの表現と整合させ,ナイーブアライメントよりも優れた効果を示す。
また,NFの組込みセマンティック知識のより内在的な評価を提供する,新しい学習自由なテスト時間最適化アルゴリズムを導入する。
包括的実験により,NFsのトレーニングを3.3$\times$で高速化し,生成品質と分類精度の両方において大幅な改善が得られた。
ImageNet 64$\times$64と256$\times$256に、NFの新たな最先端結果が確立されている。
私たちのコードはhttps://github.com/MCG-NJU/FlowBack.orgから入手可能です。
関連論文リスト
- A Constructive Framework for Nondeterministic Automata via Time-Shared, Depth-Unrolled Feedforward Networks [0.0]
非決定論的有限オートマトン(NFA)の時間分割・深度制御型フィードフォワードネットワーク(TS-FFN)を用いたフォーマルで建設的なシミュレーションフレームワークを提案する。
我々の定式化は、二進ベクトルとしてのオートマトン状態、スパース行列変換としての遷移、および共有しきい値更新の合成としての$varepsilon$-closuresを含む非決定的分岐を含む非決定論的分岐を象徴的に符号化する。
論文 参考訳(メタデータ) (2025-05-30T01:18:35Z) - Latent Bayesian Optimization via Autoregressive Normalizing Flows [17.063294409131238]
本研究では,正規化フローに基づくベイズ最適化(NF-BO)を提案する。
提案手法は,分子生成タスクにおいて優れた性能を示し,従来のLBO手法と最近のLBO手法の両方を著しく上回っている。
論文 参考訳(メタデータ) (2025-04-21T06:36:09Z) - Accelerating Full Waveform Inversion By Transfer Learning [1.0881446298284452]
フルウェーブフォーム・インバージョン (FWI) は、波動伝搬によって得られた疎測定データに基づいて材料フィールドを再構築する強力なツールである。
特定の問題に対して、ニューラルネットワーク(NN)による材料フィールドの識別は、対応する最適化問題の堅牢性と再構築品質を向上させる。
本稿では,NNベースのFWIをさらに改善するために,新しいトランスファー学習手法を提案する。
論文 参考訳(メタデータ) (2024-08-01T16:39:06Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
グラフニューラルネットワーク(GNN)の統一最適化フレームワーク内で設計されたtextsfFair textsfMessage textsfPassing(FMP)を提案する。
FMPでは、アグリゲーションがまず隣人の情報を活用するために採用され、バイアス軽減ステップにより、人口集団ノードのプレゼンテーションセンタが明示的に統合される。
ノード分類タスクの実験により、提案されたFMPは、実世界の3つのデータセットの公平性と正確性の観点から、いくつかのベースラインを上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-19T18:00:15Z) - On the Initialization of Graph Neural Networks [10.153841274798829]
グラフニューラルネットワーク層間の前方・後方伝播のばらつきを解析する。
GNN最適化(Virgo)における可変不安定化のための新しい手法を提案する。
15のデータセットで包括的な実験を行い、Virgoが優れたモデルパフォーマンスをもたらすことを示す。
論文 参考訳(メタデータ) (2023-12-05T09:55:49Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Taming Hyperparameter Tuning in Continuous Normalizing Flows Using the
JKO Scheme [60.79981399724534]
正規化フロー (NF) は、選択された確率分布を正規分布に変換する写像である。
OTベースのCNFを$alpha$をチューニングすることなく解くアルゴリズムであるJKO-Flowを提案する。
論文 参考訳(メタデータ) (2022-11-30T05:53:21Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
本研究では,ディープ・インバーチブル・ニューラルネットワークを用いた条件生成について述べる。
私たちの目標は,前処理と後処理の予測と生成を同時に行うことにあるので,エンドツーエンドのトレーニングアプローチを採用しています。
論文 参考訳(メタデータ) (2022-06-02T17:28:33Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Generalized Zero-Shot Learning via VAE-Conditioned Generative Flow [83.27681781274406]
一般化されたゼロショット学習は、意味的記述から視覚的表現へ知識を移すことによって、目に見えないクラスと見えないクラスの両方を認識することを目的としている。
近年のGZSLはデータ不足問題として定式化されており、主にGANやVAEを採用して、目に見えないクラスの視覚的特徴を生成する。
GZSLのための条件付き生成フロー,すなわちVAE-Conditioned Generative Flow (VAE-cFlow)を提案する。
論文 参考訳(メタデータ) (2020-09-01T09:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。