論文の概要: Benchmarking neutral atom-based quantum processors at scale
- arxiv url: http://arxiv.org/abs/2511.22967v1
- Date: Fri, 28 Nov 2025 08:19:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.816277
- Title: Benchmarking neutral atom-based quantum processors at scale
- Title(参考訳): 中性原子系量子プロセッサの大規模ベンチマーク
- Authors: Andrea B. Rava, Kristel Michielsen, J. A. Montanez-Barrera,
- Abstract要約: 中性原子ベースの量子計算は、フォールトトレラント量子計算の代替として確立されている。
我々はこれらの量子プロセッサを大規模に評価する2つの系統的なベンチマークを示す。
- 参考スコア(独自算出の注目度): 0.22940141855172033
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, neutral atom-based quantum computation has been established as a competing alternative for the realization of fault-tolerant quantum computation. However, as with other quantum technologies, various sources of noise limit their performance. With processors continuing to scale up, new techniques are needed to characterize and compare them in order to track their progress. In this work, we present two systematic benchmarks that evaluate these quantum processors at scale. We use the quantum adiabatic algorithm (QAA) and the quantum approximate optimization algorithm (QAOA) to solve maximal independent set (MIS) instances of random unit-disk graphs. These benchmarks are scalable, relying not on prior knowledge of the system's evolution but on the quality of the MIS solutions obtained. We benchmark quera_aquila and pasqal_fresnel on problem sizes up to 102 and 85 qubits, respectively. Overall, quera_aquila performs better on QAOA and QAA instances. Finally, we generate MIS instances of up to 1000 qubits, providing scalable benchmarks for evaluating future, larger processors as they become available.
- Abstract(参考訳): 近年、フォールトトレラント量子計算の実現に対抗して、中性原子ベースの量子計算が確立されている。
しかし、他の量子技術と同様に、様々なノイズ源は性能を制限している。
プロセッサのスケールアップが続けられているため、その進捗を追跡するために、特徴付けと比較を行う新しい技術が必要である。
本研究では、これらの量子プロセッサを大規模に評価する2つの系統的なベンチマークを示す。
本稿では,量子アディアバティックアルゴリズム(QAA)と量子近似最適化アルゴリズム(QAOA)を用いて,ランダム単位ディスクグラフの最大独立集合(MIS)を解く。
これらのベンチマークはスケーラブルであり、システムの進化に関する事前の知識ではなく、得られたMISソリューションの品質に依存している。
quera_aquila と pasqal_fresnel をそれぞれ 102 と 85 の量子ビットでベンチマークした。
全体として、quera_aquilaはQAOAインスタンスとQAAインスタンスでパフォーマンスが向上している。
最後に、最大1000キュービットのMISインスタンスを生成し、将来の大規模プロセッサが利用可能になると評価するためのスケーラブルなベンチマークを提供する。
関連論文リスト
- Evaluating the performance of quantum processing units at large width and depth [0.40964539027092917]
線形ランプ量子近似最適化アルゴリズム(LR-QAOA)に基づくベンチマークプロトコルを提案する。
LR-QAOAは、回路深度が増加するにつれてコヒーレント信号を保存するQPUの能力を定量化し、ランダムサンプリングと統計的に区別できない性能になるかどうかを特定する。
このプロトコルを6つのベンダーの24の量子プロセッサに適用し、最大156の量子ビットと1Dチェーンにまたがる1万の層、ネイティブレイアウト、完全に接続されたトポロジの問題をテストします。
論文 参考訳(メタデータ) (2025-02-10T13:50:50Z) - Benchmarking a trapped-ion quantum computer with 30 qubits [0.2276773223605655]
我々は、オール・ツー・オールな演算で、単一鎖の30量子ビットトラップイオン量子コンピュータをベンチマークする。
直接シミュレーションにより,アプリケーションのベンチマークデータを予測するためのシステムレベルのモデルを構築した。
これは、量子コンピュータがより大きく高品質なデバイスへと移行するにつれて、特徴付けがより困難になることを示している。
論文 参考訳(メタデータ) (2023-08-09T17:02:55Z) - Majorization-based benchmark of the complexity of quantum processors [105.54048699217668]
我々は、様々な量子プロセッサの動作を数値的にシミュレートし、特徴付ける。
我々は,各デバイスの性能をベンチマークラインと比較することにより,量子複雑性を同定し,評価する。
我々は、回路の出力状態が平均して高い純度である限り、偏化ベースのベンチマークが成り立つことを発見した。
論文 参考訳(メタデータ) (2023-04-10T23:01:10Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - An investigation of IBM Quantum Computing device performance on
Combinatorial Optimisation Problems [0.0]
本稿では,古典的および量子的最適化アルゴリズムの性能を近似して,トラベリングセールスマン問題(TSP)と二次割り当て問題(QAP)の2つの共通COPを解く。
2つの古典的最適化法であるブランチ・アンド・バウンド (BNB) とシミュレート・アニーリング (SA) を、変分量子固有解法 (VQE) と量子近似最適化アルゴリズム (QAOA) の2つの量子最適化法と比較した。
以上の結果から,VQEはこれらの指標に対してQAOAよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-07-08T07:02:50Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way [0.0]
我々はAtos Q-score (TM)と呼ばれる新しいベンチマークを導入する。
Qスコアは、MaxCut最適化問題を解決するために効果的に使用できる量子ビットの最大数を測定する。
量子ハードウェアのQスコアを簡単に計算できるQスコアのオープンソース実装を提供する。
論文 参考訳(メタデータ) (2021-02-25T16:26:23Z) - SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via
Cost-Effective Uncomputation [7.92565122267857]
本稿では,量子プログラムにおけるスクラッチキュービット(アンシラ)の割り当てと再利用に取り組むコンパイル基盤を提案する。
中心となるSQUAREは、量子ビット再利用の機会を生み出すために、戦略的に非計算を行う。
SQUARE は NISQ アプリケーションの平均成功率を 1.47 倍改善することを示した。
論文 参考訳(メタデータ) (2020-04-18T06:34:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。