論文の概要: Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way
- arxiv url: http://arxiv.org/abs/2102.12973v2
- Date: Mon, 26 Jul 2021 07:08:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-09 22:52:05.513377
- Title: Benchmarking quantum co-processors in an application-centric,
hardware-agnostic and scalable way
- Title(参考訳): アプリケーション中心、ハードウェア非依存、スケーラブルな方法で量子コプロセッサをベンチマークする
- Authors: Simon Martiel, Thomas Ayral, Cyril Allouche
- Abstract要約: 我々はAtos Q-score (TM)と呼ばれる新しいベンチマークを導入する。
Qスコアは、MaxCut最適化問題を解決するために効果的に使用できる量子ビットの最大数を測定する。
量子ハードウェアのQスコアを簡単に計算できるQスコアのオープンソース実装を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing protocols for benchmarking current quantum co-processors fail to
meet the usual standards for assessing the performance of
High-Performance-Computing platforms. After a synthetic review of these
protocols -- whether at the gate, circuit or application level -- we introduce
a new benchmark, dubbed Atos Q-score (TM), that is application-centric,
hardware-agnostic and scalable to quantum advantage processor sizes and beyond.
The Q-score measures the maximum number of qubits that can be used effectively
to solve the MaxCut combinatorial optimization problem with the Quantum
Approximate Optimization Algorithm. We give a robust definition of the notion
of effective performance by introducing an improved approximation ratio based
on the scaling of random and optimal algorithms. We illustrate the behavior of
Q-score using perfect and noisy simulations of quantum processors. Finally, we
provide an open-source implementation of Q-score that makes it easy to compute
the Q-score of any quantum hardware.
- Abstract(参考訳): 現在の量子コプロセッサをベンチマークするための既存のプロトコルは、ハイパフォーマンスコンピューティングプラットフォームのパフォーマンスを評価する通常の標準を満たしていない。
これらのプロトコル - ゲート、回路、アプリケーションレベルを問わず - を総合的にレビューした後、私たちは、アプリケーション中心、ハードウェア非依存、量子長所プロセッササイズ以降にスケーラブルな、atos q-score(tm)と呼ばれる新しいベンチマークを導入しました。
Qスコアは、量子近似最適化アルゴリズムを用いてMaxCutの組合せ最適化問題を解決するために効果的に使用できる量子ビットの最大数を測定する。
本稿では,ランダムアルゴリズムと最適アルゴリズムのスケーリングに基づく近似比を改良することにより,効果的な性能の概念を頑健に定義する。
量子プロセッサの完全およびノイズシミュレーションを用いて,q-scoreの挙動を説明する。
最後に、任意の量子ハードウェアのq-scoreを簡単に計算できるq-scoreのオープンソース実装を提供する。
関連論文リスト
- Benchmarking Quantum Annealers with Near-Optimal Minor-Embedded Instances [0.0]
本稿では,D-Wave Quantum Annealersに関連付けられた準最適部分埋め込みマッピングを用いてグラフインスタンスを生成するための新しいプロトコルを確立する。
この手法を用いて、制約のない最適化問題の大規模インスタンス上でQAをベンチマークし、QPUの性能を効率的な古典的解法と比較する。
論文 参考訳(メタデータ) (2024-05-02T15:19:39Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Evaluation of Parameterized Quantum Circuits with Cross-Resonance
Pulse-Driven Entanglers [0.27998963147546146]
変分量子アルゴリズム(VQA)は、ノイズの多い量子デバイスに非常に適したアルゴリズムの強力なクラスとして登場した。
これまでの研究では、VQAに対して有効なパラメタライズド量子回路(PQC)やアンサッツを選択することが、その全体的な性能に欠かせないことが示されている。
本稿では、量子マシンへのパルスレベルアクセスと2量子ビット相互作用の理解を利用して、2量子ビットエンタングルの設計を最適化する。
論文 参考訳(メタデータ) (2022-11-01T09:46:34Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
浅いQAOA回路の量子ビット数と線形にスケールするグラフ分解に基づく古典的アルゴリズムを提案する。
我々の結果は、QAOAによる量子アドバンテージの探索だけでなく、NISQプロセッサのベンチマークにも有用である。
論文 参考訳(メタデータ) (2021-12-21T12:41:31Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - QPack: Quantum Approximate Optimization Algorithms as universal
benchmark for quantum computers [1.1602089225841632]
ノイズ中間スケール量子(NISQ)コンピュータの普遍的ベンチマークであるQPackを提案する。
QPackは、量子コンピュータが解決できる最大問題サイズ、必要なランタイム、および達成された精度を評価する。
論文 参考訳(メタデータ) (2021-03-31T16:20:51Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
本稿では,NISQ(Noisy Intermediate-Scale Quantum)デバイス上でのチューニングについて述べる。
VQEのケーススタディにおいて、異なる最小値の効率と有効性について分析した。
これまでのほとんどの結果は量子VQE回路のチューニングに集中しているが、量子ノイズの存在下では、古典的な最小化ステップを慎重に選択して正しい結果を得る必要がある。
論文 参考訳(メタデータ) (2020-04-06T21:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。