論文の概要: A transfer learning approach for automatic conflicts detection in software requirement sentence pairs based on dual encoders
- arxiv url: http://arxiv.org/abs/2511.23007v1
- Date: Fri, 28 Nov 2025 09:16:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-01 19:47:55.838027
- Title: A transfer learning approach for automatic conflicts detection in software requirement sentence pairs based on dual encoders
- Title(参考訳): デュアルエンコーダに基づくソフトウェア要件文ペアの自動衝突検出のための転写学習手法
- Authors: Yizheng Wang, Tao Jiang, Jinyan Bai, Zhengbin Zou, Tiancheng Xue, Nan Zhang, Jie Luan,
- Abstract要約: 本稿では,SBERTとSimCSEをベースとしたTransferable Software Requirement Conflict Detection Frameworkを提案する。
提案したフレームワークは、マクロF1と重み付きF1のスコアをドメイン内設定で10.4%改善し、クロスドメインシナリオでマクロF1を11.4%向上させる。
- 参考スコア(独自算出の注目度): 5.780557526613627
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Software Requirement Document (RD) typically contain tens of thousands of individual requirements, and ensuring consistency among these requirements is critical for the success of software engineering projects. Automated detection methods can significantly enhance efficiency and reduce costs; however, existing approaches still face several challenges, including low detection accuracy on imbalanced data, limited semantic extraction due to the use of a single encoder, and suboptimal performance in cross-domain transfer learning. To address these issues, this paper proposes a Transferable Software Requirement Conflict Detection Framework based on SBERT and SimCSE, termed TSRCDF-SS. First, the framework employs two independent encoders, Sentence-BERT (SBERT) and Simple Contrastive Sentence Embedding (SimCSE), to generate sentence embeddings for requirement pairs, followed by a six-element concatenation strategy. Furthermore, the classifier is enhanced by a two-layer fully connected feedforward neural network (FFNN) with a hybrid loss optimization strategy that integrates a variant of Focal Loss, domain-specific constraints, and a confidence-based penalty term. Finally, the framework synergistically integrates sequential and cross-domain transfer learning. Experimental results demonstrate that the proposed framework achieves a 10.4% improvement in both macro-F1 and weighted-F1 scores in in-domain settings, and an 11.4% increase in macro-F1 in cross-domain scenarios.
- Abstract(参考訳): ソフトウェア要件文書(RD)は通常、数万の個々の要件を含み、これらの要件間の一貫性を保証することは、ソフトウェアエンジニアリングプロジェクトの成功に不可欠である。
自動検出手法は効率を大幅に向上させコストを削減することができるが、既存の手法では、不均衡なデータに対する検出精度の低さ、単一エンコーダの使用による意味抽出の制限、ドメイン間転送学習における準最適性能など、いくつかの課題に直面している。
そこで本稿では,SBERTとSimCSEをベースとしたTransferable Software Requirement Conflict Detection Framework(TSRCDF-SS)を提案する。
まず、このフレームワークは2つの独立したエンコーダ、SBERT(Sentence-BERT)とSimple Contrastive Sentence Embedding(SimCSE)を使用して、要件ペアの文埋め込みを生成し、続いて6要素の結合戦略を生成する。
さらに、この分類器は、フォカルロスの変種、ドメイン固有の制約、信頼に基づくペナルティ項を統合するハイブリッド損失最適化戦略を備えた2層完全接続フィードフォワードニューラルネットワーク(FFNN)によって強化される。
最後に、このフレームワークはシーケンシャルおよびクロスドメイントランスファー学習を相乗的に統合する。
実験の結果,提案フレームワークはマクロF1および重み付きF1スコアをドメイン内設定で10.4%,クロスドメインシナリオで11.4%向上した。
関連論文リスト
- CoT-Saliency: Unified Chain-of-Thought Reasoning for Heterogeneous Saliency Tasks [96.64597365827046]
本稿では,3つの運用上不均一なサリエンシタスクを共同で処理する,最初の統合フレームワークを提案する。
タスクの不均一性を橋渡しする視覚言語モデル(VLM)において、チェーン・オブ・ソート(CoT)推論プロセスを導入する。
我々は,全タスクにまたがる特別なSOTA手法と強力なクローズドソースVLMの整合性を示す。
論文 参考訳(メタデータ) (2025-11-01T04:37:01Z) - Localized Kernel Projection Outlyingness: A Two-Stage Approach for Multi-Modal Outlier Detection [0.0]
Two-Stage LKPLOは、新しいマルチステージアウトレイラ検出フレームワークである。
従来の射影的手法の制約を克服する。
挑戦的なデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-10-28T03:53:46Z) - Winning the Pruning Gamble: A Unified Approach to Joint Sample and Token Pruning for Efficient Supervised Fine-Tuning [71.30276778807068]
サンプルプルーニングとトークンプルーニングを戦略的に協調する統合フレームワークを提案する。
Q-Tuningは、トレーニングデータの12.5%しか使用せず、全データSFTベースラインに対する平均38%の改善を実現している。
論文 参考訳(メタデータ) (2025-09-28T13:27:38Z) - Domain Adaptation via Feature Refinement [0.3867363075280543]
本稿では,分散シフト下での非教師付きドメイン適応のための簡易かつ効果的なフレームワークであるDAFR(Domain Adaptation via Feature Refinement)を提案する。
提案手法は, ラベルなし対象データを用いたバッチ正規化統計の適応, ソース学習モデルからの特徴蒸留, 仮説伝達の3つの重要な要素を組み合わせた。
論文 参考訳(メタデータ) (2025-08-22T06:32:19Z) - Statistical Analysis of Conditional Group Distributionally Robust Optimization with Cross-Entropy Loss [16.1456465253627]
本研究では、複数のソースドメインからラベル付きデータを入手でき、対象ドメインからラベルなしデータのみを観測できるマルチソース非教師付きドメイン適応について検討する。
本稿では,情報源領域からの条件付き結果分布の凸結合を最小化することにより,分類器を学習するグループ分散条件最適化フレームワークを提案する。
実験的なCG-DRO推定器の高速な統計的収束速度を,理論ブリッジとして機能する2つの代理極小最適化問題を構築することにより確立する。
論文 参考訳(メタデータ) (2025-07-14T04:21:23Z) - NDCG-Consistent Softmax Approximation with Accelerated Convergence [67.10365329542365]
本稿では,ランキングの指標と直接一致した新たな損失定式化を提案する。
提案したRG損失を高効率な Alternating Least Squares (ALS) 最適化手法と統合する。
実世界のデータセットに対する実証的な評価は、我々のアプローチが同等または上位のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2025-06-11T06:59:17Z) - Sparse Optimization for Transfer Learning: A L0-Regularized Framework for Multi-Source Domain Adaptation [9.605924781372849]
L0-regularizationに基づくSparse Optimization for Transfer Learningフレームワークを提案する。
シミュレーションにより、SOTLは推定精度と計算速度の両方を著しく改善することが示された。
コミュニティと犯罪のベンチマークにおける実証的検証は、クロスドメイン転送におけるSOTL法の統計的堅牢性を示している。
論文 参考訳(メタデータ) (2025-04-07T08:06:16Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
フェデレーテッド・ラーニング(FL)は、無線エッジネットワークにおけるローカル・プライバシ・アウェア・コラボレーティブ・モデルトレーニングの有効なソリューションとして認識されている。
既存の通信効率の高いFLアルゴリズムは、デバイス間の大きなばらつきを低減できない。
本稿では,高度分散還元方式に依存する新しい通信効率FLアルゴリズムであるFedQVRを提案する。
論文 参考訳(メタデータ) (2025-01-20T04:26:21Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
属性は、クライアント間の一貫した最適化方向から、現在の連邦学習(FL)フレームワークを歪めます。
本稿では,ドメイン固有属性とクロス不変属性を2つの補足枝に分離するために,非絡み付きフェデレーション学習(DFL)を提案する。
実験により、DFLはSOTA FL法と比較して高い性能、より良い解釈可能性、より高速な収束率でFLを促進することが確認された。
論文 参考訳(メタデータ) (2022-06-14T13:12:12Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
半教師付きドメイン適応 (SSDA) は,1) アノテーションの低いデータに過度に適合する手法と,2) ドメイン間の分散シフトの両方を克服しなければならない課題である。
SSLとDAの協調を正規化するための適応型構造学習手法を提案する。
論文 参考訳(メタデータ) (2021-12-12T06:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。