論文の概要: Odometry Without Correspondence from Inertially Constrained Ruled Surfaces
- arxiv url: http://arxiv.org/abs/2512.00327v1
- Date: Sat, 29 Nov 2025 05:36:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.172003
- Title: Odometry Without Correspondence from Inertially Constrained Ruled Surfaces
- Title(参考訳): 慣性拘束された規則面からの対応のないオドメトリー
- Authors: Chenqi Zhu, Levi Burner, Yiannis Aloimonos,
- Abstract要約: 支配面から3Dシーンと視覚計測を再構成する新しいアルゴリズムを提案する。
本研究は, エッジ検出に対するイベントカメラの妥当性に着想を得て, 3次元シーンの再構成と, 支配面からの視覚計測を行う新しいアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 14.767550805977999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visual odometry techniques typically rely on feature extraction from a sequence of images and subsequent computation of optical flow. This point-to-point correspondence between two consecutive frames can be costly to compute and suffers from varying accuracy, which affects the odometry estimate's quality. Attempts have been made to bypass the difficulties originating from the correspondence problem by adopting line features and fusing other sensors (event camera, IMU) to improve performance, many of which still heavily rely on correspondence. If the camera observes a straight line as it moves, the image of the line sweeps a smooth surface in image-space time. It is a ruled surface and analyzing its shape gives information about odometry. Further, its estimation requires only differentially computed updates from point-to-line associations. Inspired by event cameras' propensity for edge detection, this research presents a novel algorithm to reconstruct 3D scenes and visual odometry from these ruled surfaces. By constraining the surfaces with the inertia measurements from an onboard IMU sensor, the dimensionality of the solution space is greatly reduced.
- Abstract(参考訳): 視覚計測技術は通常、一連の画像からの特徴抽出とその後の光学的流れの計算に頼っている。
この2つの連続するフレーム間のポイント・ツー・ポイント対応は計算にコストがかかり、精度が変化し、オドメトリ推定の品質に影響を及ぼす。
ライン機能を採用し、他のセンサー(イベントカメラ、IMU)を融合させることで、対応性の問題から生じる困難を回避しようとしているが、その多くは依然として対応性に大きく依存している。
カメラが動きながら直線を観察すると、ラインの画像は画像空間の時間で滑らかな表面を掃除します。
支配的な表面であり、その形状を解析することで、オドメトリーに関する情報が得られる。
さらに、その推定には、ポイント・ツー・ライン・アソシエーションからの差分計算された更新しか必要としない。
本研究は, エッジ検出に対するイベントカメラの妥当性に着想を得て, 3次元シーンの再構成と, 支配面からの視覚計測を行う新しいアルゴリズムを提案する。
搭載したIMUセンサからの慣性測定で表面を拘束することにより、溶液空間の寸法が大幅に減少する。
関連論文リスト
- VA-GS: Enhancing the Geometric Representation of Gaussian Splatting via View Alignment [48.147381011235446]
3D Gaussian Splattingは、リアルタイムな新規ビュー合成のための効率的なソリューションとして最近登場した。
ビューアライメントによる3次元ガウス多様体の幾何学的表現を強化する新しい手法を提案する。
本手法は, 表面再構成と新しいビュー合成の両面において, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2025-10-13T14:44:50Z) - Visual Odometry with Transformers [68.453547770334]
特徴抽出により単眼フレームのシーケンスを処理するビジュアル・オドメトリ・トランスフォーマ(VoT)を導入する。
従来の方法とは異なり、VoTは密度の高い幾何学を推定することなくカメラの動きを直接予測し、監視のためにカメラのポーズのみに依存する。
VoTは、より大きなデータセットで効果的にスケールし、より強力なトレーニング済みバックボーンの恩恵を受け、多様なカメラモーションとキャリブレーション設定を一般化し、従来のメソッドよりも3倍以上高速に動作しながらパフォーマンスを向上する。
論文 参考訳(メタデータ) (2025-10-02T17:00:14Z) - Pseudo Depth Meets Gaussian: A Feed-forward RGB SLAM Baseline [64.42938561167402]
本稿では,3次元ガウス型SLAMとフィードフォワードリカレント予測モジュールを組み合わせたオンライン3次元再構成手法を提案する。
このアプローチは、遅いテスト時間の最適化を高速なネットワーク推論に置き換え、トラッキング速度を大幅に改善する。
提案手法は,最先端のSplaTAMと同等の性能を示しながら,追跡時間を90%以上削減する。
論文 参考訳(メタデータ) (2025-08-06T16:16:58Z) - Using a Distance Sensor to Detect Deviations in a Planar Surface [20.15053198469424]
平面表面が幾何学的偏差を含むかどうかを,小型光時間センサによる瞬時測定のみで決定する手法について検討する。
本手法の鍵となるのは,オフザシェルフ距離センサで捉えた生の飛行時間データに符号化された全情報の活用である。
本研究では,広視野での移動ロボットの障害物回避を可能にする実例を構築した。
論文 参考訳(メタデータ) (2024-08-07T15:24:25Z) - Inertial Guided Uncertainty Estimation of Feature Correspondence in
Visual-Inertial Odometry/SLAM [8.136426395547893]
慣性ガイダンスを用いて特徴対応の不確かさを推定する手法を提案する。
また,近年の視覚-慣性オドメトリー/SLAMアルゴリズムの1つに組み込むことにより,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-11-07T04:56:29Z) - Real-Time Simultaneous Localization and Mapping with LiDAR intensity [9.374695605941627]
実時間LiDAR強調画像を用いた同時位置推定とマッピング手法を提案する。
提案手法は高精度でリアルタイムに動作可能であり,照度変化,低テクスチャ,非構造化環境でも有効である。
論文 参考訳(メタデータ) (2023-01-23T03:59:48Z) - Differentiable Uncalibrated Imaging [25.67247660827913]
本稿では,センサ位置や投影角などの測定座標の不確実性に対処する,識別可能なイメージングフレームワークを提案する。
入力座標に対して自然に微分可能な暗黙のニューラルネットワーク、別名ニューラルフィールドを適用する。
測定表現を協調的に適合させ、不確実な測定座標を最適化し、一貫したキャリブレーションを保証する画像再構成を行うため、微分性は鍵となる。
論文 参考訳(メタデータ) (2022-11-18T22:48:09Z) - PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for
Single-Image Novel View Synthesis [52.546998369121354]
シングルビューRGB画像からニューラル放射場を再構成する学習フレームワークPVSeRFを提案する。
本稿では,明示的な幾何学的推論を取り入れ,放射場予測のための画素アラインな特徴と組み合わせることを提案する。
このような幾何学的特徴の導入は、外観と幾何学の絡み合いを改善するのに有効であることを示す。
論文 参考訳(メタデータ) (2022-02-10T07:39:47Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
空間と測光の両方を同時に活用できる効率的な完全畳み込みアーキテクチャを提案する。
分離可能な4D畳み込みと2D熱マップを使うことで、サイズが小さくなり、効率が向上する。
論文 参考訳(メタデータ) (2021-03-22T18:06:58Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。