論文の概要: Recognizing Pneumonia in Real-World Chest X-rays with a Classifier Trained with Images Synthetically Generated by Nano Banana
- arxiv url: http://arxiv.org/abs/2512.00428v1
- Date: Sat, 29 Nov 2025 10:05:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.239754
- Title: Recognizing Pneumonia in Real-World Chest X-rays with a Classifier Trained with Images Synthetically Generated by Nano Banana
- Title(参考訳): ナノバナで合成した画像を用いた分類器を用いた実世界胸部X線検査による肺炎の認識
- Authors: Jiachuan Peng, Kyle Lam, Jianing Qiu,
- Abstract要約: Googleがリリースした最新の画像生成と編集のためのAIモデルであるNano Bananaによって生成された合成胸部X線(CXR)画像を用いた分類器を訓練した。
合成データだけで訓練された現実世界のCXRに直接適用すると、分類器はAUROC 0.923、AUPR 0.9900を達成した。
これらの実世界のデータに対する外部検証結果は、このアプローチの実現可能性を示し、医療AI開発における合成データの可能性を示している。
- 参考スコア(独自算出の注目度): 6.19177957021714
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We trained a classifier with synthetic chest X-ray (CXR) images generated by Nano Banana, the latest AI model for image generation and editing, released by Google. When directly applied to real-world CXRs having only been trained with synthetic data, the classifier achieved an AUROC of 0.923 (95% CI: 0.919 - 0.927), and an AUPR of 0.900 (95% CI: 0.894 - 0.907) in recognizing pneumonia in the 2018 RSNA Pneumonia Detection dataset (14,863 CXRs), and an AUROC of 0.824 (95% CI: 0.810 - 0.836), and an AUPR of 0.913 (95% CI: 0.904 - 0.922) in the Chest X-Ray dataset (5,856 CXRs). These external validation results on real-world data demonstrate the feasibility of this approach and suggest potential for synthetic data in medical AI development. Nonetheless, several limitations remain at present, including challenges in prompt design for controlling the diversity of synthetic CXR data and the requirement for post-processing to ensure alignment with real-world data. However, the growing sophistication and accessibility of medical intelligence will necessitate substantial validation, regulatory approval, and ethical oversight prior to clinical translation.
- Abstract(参考訳): Googleがリリースした最新の画像生成と編集のためのAIモデルであるNano Bananaによって生成された合成胸部X線(CXR)画像を用いた分類器を訓練した。
2018年のRSNA肺炎検出データセット(14,863 CXR)における肺炎の認識において、AUROCは0.923(95% CI:0.919 - 0.927)、AUPRは0.924(95% CI:0.810 - 0.836)、AUPRは0.913(95% CI:0.904 - 0.922)を達成した。
これらの実世界のデータに対する外部検証結果は、このアプローチの実現可能性を示し、医療AI開発における合成データの可能性を示している。
それでも、合成CXRデータの多様性を制御するための設計や、現実世界のデータとの整合性を確保するための後処理の必要性など、いくつかの制限が残っている。
しかし、医学知能の高度化とアクセシビリティの増大は、臨床翻訳に先立ってかなりの検証、規制承認、倫理的監督を必要とする。
関連論文リスト
- A Novel Attention-Augmented Wavelet YOLO System for Real-time Brain Vessel Segmentation on Transcranial Color-coded Doppler [49.03919553747297]
我々は,脳動脈を効率よく捉えることができるAIを利用したリアルタイムCoW自動分割システムを提案する。
Transcranial Color-coded Doppler (TCCD) を用いたAIによる脳血管セグメンテーションの事前研究は行われていない。
提案したAAW-YOLOは, 異方性および対側性CoW容器のセグメンテーションにおいて高い性能を示した。
論文 参考訳(メタデータ) (2025-08-19T14:41:22Z) - HistoART: Histopathology Artifact Detection and Reporting Tool [37.31105955164019]
ワイルスライドイメージング(WSI)は、組織標本の詳細な高分解能検査のために広く用いられている。
WSIは、スライドの準備とスキャンの間に導入されたアーティファクトに弱いままです。
本稿では,WSIに対する3つのロバストなアーティファクト検出手法を提案し,比較する。
論文 参考訳(メタデータ) (2025-06-23T17:22:19Z) - Improving Fairness of Automated Chest X-ray Diagnosis by Contrastive
Learning [19.948079693716075]
提案するAIモデルは、教師付きコントラスト学習を利用して、CXR診断におけるバイアスを最小限にする。
77,887個のCXR画像を用いたMIDRCデータセットと,112,120個のCXR画像を用いたNIH Chest X-rayデータセットの2つのデータセットについて評価を行った。
論文 参考訳(メタデータ) (2024-01-25T20:03:57Z) - Neural Network-Based Histologic Remission Prediction In Ulcerative
Colitis [38.150634108667774]
潰瘍性大腸炎(UC)の新しい治療標的としての組織学的寛解
内視鏡(Endocytoscopy、EC)は、新しい超高倍率内視鏡技術である。
本稿では,心電図の組織学的疾患活動を評価するニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2023-08-28T15:54:14Z) - Can Deep Learning Reliably Recognize Abnormality Patterns on Chest
X-rays? A Multi-Reader Study Examining One Month of AI Implementation in
Everyday Radiology Clinical Practice [0.0]
胸部X線上の7種類の放射線学的所見を検出・局所化するための深層学習に基づく自動検出アルゴリズム(DLAD)を開発した。
提案したDLADは高感度(ATE 1.000 (0.624-1.000), CON 0.864 (0.671-0.956), EFF 0.953 (0.887-0.983), LES 0.905 (0.715-0.978), SCE 1.000 (0.366-1.000), CMG 0.837 (0.711-0.917), PNO 0.875 (0.538-0.986)を実現した。
本研究の結果から,提案したDLADが日常生活への統合の可能性を秘めていることが明らかとなった。
論文 参考訳(メタデータ) (2023-05-17T10:43:50Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - CIRCA: comprehensible online system in support of chest X-rays-based
COVID-19 diagnosis [37.41181188499616]
深層学習技術は、新型コロナウイルスの迅速検出と疾患の進行のモニタリングに役立つ。
5つの異なるデータセットを使用して、モデルトレーニングのための23の799 CXRの代表的なデータセットを構築した。
The U-Net-based model was developed to identified a clinically relevant region of the CXR。
論文 参考訳(メタデータ) (2022-10-11T13:30:34Z) - A Generalizable Artificial Intelligence Model for COVID-19
Classification Task Using Chest X-ray Radiographs: Evaluated Over Four
Clinical Datasets with 15,097 Patients [6.209420804714487]
トレーニングされたモデルの一般化性は、4つの異なる実世界の臨床データセットを用いて遡及的に評価された。
単一ソースの臨床データセットを使用してトレーニングされたAIモデルは、内部時間テストセットに適用すると、AUCが0.82に達した。
医療画像・データ資源センターが収集した多施設のCOVID-19データセットに適用すると、AUCは0.79に達した。
論文 参考訳(メタデータ) (2022-10-04T04:12:13Z) - A Deep Learning Based Workflow for Detection of Lung Nodules With Chest
Radiograph [0.0]
CXRから肺領域を識別するセグメンテーションモデルを構築し,それを16個のパッチに分割した。
これらのラベル付きパッチを使用して、ディープニューラルネットワーク(DNN)モデルを微調整し、パッチをポジティブまたはネガティブに分類する。
論文 参考訳(メタデータ) (2021-12-19T16:19:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。