論文の概要: No-Regret Gaussian Process Optimization of Time-Varying Functions
- arxiv url: http://arxiv.org/abs/2512.00517v1
- Date: Sat, 29 Nov 2025 15:22:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.274864
- Title: No-Regret Gaussian Process Optimization of Time-Varying Functions
- Title(参考訳): 時変関数の非回帰ガウス過程最適化
- Authors: Eliabelle Mauduit, Eloïse Berthier, Andrea Simonetto,
- Abstract要約: 本稿では,RKHSの基準を定めている頻繁な設定における時間変化報酬を最適化する新しい手法を提案する。
厳密な帯域設定では、0-regretは一般には達成できないので、我々は、以前に観測された点について追加のクエリを許容する後者を緩和する。
スパース推論とUIが後悔に与える影響をベースとしたオンラインアルゴリズム textbfW-SparQ-GP-UCB を提案する。
- 参考スコア(独自算出の注目度): 1.9499120576896225
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sequential optimization of black-box functions from noisy evaluations has been widely studied, with Gaussian Process bandit algorithms such as GP-UCB guaranteeing no-regret in stationary settings. However, for time-varying objectives, it is known that no-regret is unattainable under pure bandit feedback unless strong and often unrealistic assumptions are imposed. In this article, we propose a novel method to optimize time-varying rewards in the frequentist setting, where the objective has bounded RKHS norm. Time variations are captured through uncertainty injection (UI), which enables heteroscedastic GP regression that adapts past observations to the current time step. As no-regret is unattainable in general in the strict bandit setting, we relax the latter allowing additional queries on previously observed points. Building on sparse inference and the effect of UI on regret, we propose \textbf{W-SparQ-GP-UCB}, an online algorithm that achieves no-regret with only a vanishing number of additional queries per iteration. To assess the theoretical limits of this approach, we establish a lower bound on the number of additional queries required for no-regret, proving the efficiency of our method. Finally, we provide a comprehensive analysis linking the degree of time-variation of the function to achievable regret rates, together with upper and lower bounds on the number of additional queries needed in each regime.
- Abstract(参考訳): ノイズ評価からブラックボックス関数の逐次最適化が広く研究されており、GP-UCBのようなガウス過程の帯域幅アルゴリズムは定常条件下での非回帰を保証している。
しかし、時間によって異なる目的のために、厳密でしばしば非現実的な仮定が課せられない限り、純粋な盗賊のフィードバックの下では、No-regretは達成できないことが知られている。
本稿では,RKHSの基準を定めている頻繁な設定における時間変化報酬を最適化する新しい手法を提案する。
時間変化は不確実性注入(UI)によって捉えられるため、過去の観測を現在の時間ステップに適応させるヘテロセダスティックGPレグレッションが可能になる。
厳密な帯域設定では、0-regretは一般には達成できないので、我々は、以前に観測された点について追加のクエリを許容する後者を緩和する。
スパース推論とUIが後悔に与える影響をベースとしたオンラインアルゴリズムである \textbf{W-SparQ-GP-UCB} を提案する。
提案手法の理論的限界を評価するため, 提案手法の効率性を実証し, ノンレグレットに必要な追加クエリ数を低く設定する。
最後に、関数の時間変化の度合いを達成可能な後悔率にリンクする包括的分析と、各レシスタンスに必要な追加クエリ数に関する上と下の境界を関連付ける。
関連論文リスト
- Near-Optimal Algorithm for Non-Stationary Kernelized Bandits [6.379833644595456]
時変ベイズ最適化(英語版)とも呼ばれる非定常カーネル化バンドイット問題(KB)について検討する。
我々は,2乗指数およびマタン核を持つ非定常KBに対して,アルゴリズムに依存しない最初のリフレッシュローバウンドを示す。
本稿では,ランダムな置換による位相除去を再開する手法を提案する。
論文 参考訳(メタデータ) (2024-10-21T14:28:26Z) - On the Sublinear Regret of GP-UCB [58.25014663727544]
ガウス過程上信頼境界 (GP-UCB) アルゴリズムは, ほぼ最適の後悔率を有することを示す。
私たちの改善は、基盤となるカーネルの滑らかさに比例してカーネルリッジ推定を正規化するという、重要な技術的貢献に依存しています。
論文 参考訳(メタデータ) (2023-07-14T13:56:11Z) - Event-Triggered Time-Varying Bayesian Optimization [47.30677525394649]
本稿では,対象関数の変化を検出してデータセットをリセットするまで,最適化問題を静的に扱うイベントトリガーアルゴリズムET-GP-UCBを提案する。
これにより、アルゴリズムは正確な事前知識を必要とせずに、オンラインで時間変化を実現することができる。
時間的変化を正確に知ることなく、適応的リセットに対する後悔境界を導出し、ET-GP-UCBが合成データと実世界のデータの両方で競合するGP-UCBアルゴリズムより優れていることを示す数値実験を行った。
論文 参考訳(メタデータ) (2022-08-23T07:50:52Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
カーネル化されたバンディットアルゴリズムは、この問題に対して強い経験的および理論的性能を示した。
本稿では、未知関数を$epsilon$-一様近似で近似できるエンフェミス特定カーネル化帯域設定を、ある再生カーネルヒルベルト空間(RKHS)において有界ノルムを持つ関数で導入する。
提案アルゴリズムは,不特定性に関する事前知識を伴わず,$epsilon$への最適依存を実現する。
論文 参考訳(メタデータ) (2021-11-09T09:00:02Z) - On Limited-Memory Subsampling Strategies for Bandits [0.0]
本稿では,Budry et al. (2020) の最近の研究で提案されている単純な決定論的部分サンプリング則が,一次元指数関数族において最適であることを示す。
また、これらの保証は、アルゴリズムメモリを時間軸の多対数関数に制限する場合にも有効であることを示す。
本稿では,近年の観測結果のみをサブサンプリングに用い,既知の急激な変化を前提とした最適後悔保証を実現するアルゴリズムの変種を提案する。
論文 参考訳(メタデータ) (2021-06-21T09:11:22Z) - No-Regret Algorithms for Time-Varying Bayesian Optimization [0.0]
我々は,時間変動環境を捉えるために,一般変動予算モデルを採用する。
R-GP-UCBとSW-GP-UCBの2つのGP-UCB型アルゴリズムを紹介します。
この結果は,線形カーネルを用いた場合の先行線形バンディット結果を回復するだけでなく,時間変動ガウス過程バンディットの先行後悔解析を補完するものである。
論文 参考訳(メタデータ) (2021-02-11T22:35:32Z) - Regret and Belief Complexity Trade-off in Gaussian Process Bandits via
Information Thresholding [42.669970064867556]
GPバンディットアルゴリズムの残差境界と後部分布の複雑さのトレードオフを特徴付ける方法を示す。
大域的最適化に応用したGPバンディットアルゴリズムの精度と複雑性のトレードオフを観察する。
論文 参考訳(メタデータ) (2020-03-23T21:05:15Z) - Time-varying Gaussian Process Bandit Optimization with Non-constant
Evaluation Time [93.6788993843846]
非定常評価時間を効果的に処理できる新しい時間変化ベイズ最適化アルゴリズムを提案する。
我々の限界は、評価時間列のパターンが問題の難易度に大きな影響を与えることを決定づける。
論文 参考訳(メタデータ) (2020-03-10T13:28:33Z) - Corruption-Tolerant Gaussian Process Bandit Optimization [130.60115798580136]
未知(典型的には非生成)関数を有界ノルムで最適化する問題を考察する。
我々は「高速だが非ローバスト」と「スロー」に基づく高速スローGP-UCBに基づくアルゴリズムを提案する。
ある種の依存関係は、汚職レベルによっては要求できない、と我々は主張する。
論文 参考訳(メタデータ) (2020-03-04T09:46:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。