論文の概要: IslandRun: Privacy-Aware Multi-Objective Orchestration for Distributed AI Inference
- arxiv url: http://arxiv.org/abs/2512.00595v1
- Date: Sat, 29 Nov 2025 18:52:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.314094
- Title: IslandRun: Privacy-Aware Multi-Objective Orchestration for Distributed AI Inference
- Title(参考訳): IslandRun: 分散AI推論のためのプライバシを意識した多目的オーケストレーション
- Authors: Bala Siva Sai Akhil Malepati,
- Abstract要約: 単一の計算リソースが同時にパフォーマンスを最大化し、プライバシを保持し、コストを最小化し、信頼を維持することはない。
計算資源を自律的な「島」として扱う多目的オーケストレーションシステム「アイランドラン」について紹介する。
これにより、不均一なパーソナルコンピューティングエコシステム間での、プライバシを意識した分散推論オーケストレーションのための、新たなパラダイムが確立される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern AI inference faces an irreducible tension: no single computational resource simultaneously maximizes performance, preserves privacy, minimizes cost, and maintains trust. Existing orchestration frameworks optimize single dimensions (Kubernetes prioritizes latency, federated learning preserves privacy, edge computing reduces network distance), creating solutions that struggle under real-world heterogeneity. We present IslandRun, a multi-objective orchestration system that treats computational resources as autonomous "islands" spanning personal devices, private edge servers, and public cloud. Our key insights: (1) request-level heterogeneity demands policy-constrained multi-objective optimization, (2) data locality enables routing compute to data rather than data to compute, and (3) typed placeholder sanitization preserves context semantics across trust boundaries. IslandRun introduces agent-based routing, tiered island groups with differential trust, and reversible anonymization. This establishes a new paradigm for privacy-aware, decentralized inference orchestration across heterogeneous personal computing ecosystems.
- Abstract(参考訳): 単一の計算リソースが同時にパフォーマンスを最大化し、プライバシを保護し、コストを最小化し、信頼を維持する。
既存のオーケストレーションフレームワークは、単一の次元を最適化する(Kubernetesはレイテンシを優先し、フェデレーション付き学習はプライバシを保護し、エッジコンピューティングはネットワーク距離を減らす)。
計算資源をパーソナルデバイス、プライベートエッジサーバ、パブリッククラウドにまたがる自律的な「島」として扱う、多目的オーケストレーションシステムである。
1)要求レベルの不均一性はポリシーに制約のある多目的最適化を必要とし、(2)データの局所性はデータではなくデータへのルーティングを可能にし、(3)タイプドプレースホルダーのサニタイゼーションは信頼境界を越えてコンテキストセマンティクスを保存する。
IslandRunはエージェントベースのルーティング、異なる信頼を持つ結合された島群、可逆的な匿名化を導入している。
これにより、不均一なパーソナルコンピューティングエコシステム間での、プライバシを意識した分散推論オーケストレーションのための、新たなパラダイムが確立される。
関連論文リスト
- ALPINE: A Lightweight and Adaptive Privacy-Decision Agent Framework for Dynamic Edge Crowdsensing [34.752121524751466]
ALPINEは軽量で適応的なフレームワークで、端末デバイスがリアルタイムに差分プライバシーレベルを調整できるようにする。
環境リスク評価に基づいて、プライバシゲイン、データユーティリティ、エネルギーコストのバランスをとる報酬関数を設計する。
協調リスクモデルと事前訓練されたTD3ベースのエージェントの両方が、低オーバーヘッドデプロイメント用に設計されている。
論文 参考訳(メタデータ) (2025-10-20T05:03:25Z) - Decentralized Differentially Private Power Method [4.58112062523768]
ネットワーク化されたマルチエージェント設定において主成分分析(PCA)を行うための分散分散微分プライベート・パワー・メソッド(D-DP-PM)を提案する。
本手法は,ネットワーク全体の固有ベクトルを協調的に推定しながら,$(epsilon,delta)$-Differential Privacy (DP)を保証する。
実世界のデータセット実験により、D-DP-PMは、単純で局所的なDPアプローチに比べて、優れたプライバシーとユーティリティのトレードオフを実現することが示された。
論文 参考訳(メタデータ) (2025-07-30T17:15:50Z) - Collaborative Inference over Wireless Channels with Feature Differential Privacy [57.68286389879283]
複数の無線エッジデバイス間の協調推論は、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
抽出された特徴を抽出することは、プロセス中に機密性の高い個人情報が暴露されるため、重大なプライバシーリスクをもたらす。
本稿では,ネットワーク内の各エッジデバイスが抽出された機能のプライバシを保護し,それらを中央サーバに送信して推論を行う,新たなプライバシ保存協調推論機構を提案する。
論文 参考訳(メタデータ) (2024-10-25T18:11:02Z) - Model Agnostic Hybrid Sharding For Heterogeneous Distributed Inference [11.39873199479642]
Nesaは、分散AI推論用に設計されたモデルに依存しないシャーディングフレームワークを導入した。
私たちのフレームワークでは、ブロックチェーンベースのディープニューラルネットワークシャーディングを使用して、さまざまなノードネットワークに計算タスクを分散しています。
われわれの結果は、最先端のAI技術へのアクセスを民主化する可能性を強調している。
論文 参考訳(メタデータ) (2024-07-29T08:18:48Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Libertas: Privacy-Preserving Collective Computation for Decentralised Personal Data Stores [18.91869691495181]
モジュールアーキテクチャであるLibertasを導入し、MPCとSolidのようなPSDを統合する。
我々は、全知的な視点から、個人ベースの、ユーザ中心の信頼とセキュリティへのパラダイムシフトを紹介します。
論文 参考訳(メタデータ) (2023-09-28T12:07:40Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
複数の基地局とセル間干渉を持つ無線システムにおける連合学習モデルを考える。
本稿では,学習過程の収束挙動を,その最適性ギャップの上限を導出することによって示す。
提案するスケジューラは,ランダムなスケジューラと比較して予測平均精度を向上する。
論文 参考訳(メタデータ) (2022-08-25T03:37:11Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
分散最適化は、現代の協調機械学習、分散推定と制御、大規模センシングの基本的な構成要素である。
データが関与して以降、分散最適化アルゴリズムの実装において、プライバシ保護がますます重要になっている。
論文 参考訳(メタデータ) (2022-05-08T14:38:23Z) - Secure Distributed/Federated Learning: Prediction-Privacy Trade-Off for
Multi-Agent System [4.190359509901197]
分散学習(DLとFL)フレームワーク内で推論を行うビッグデータ時代において、中央サーバは大量のデータを処理する必要がある。
分散コンピューティングトポロジを考えると、プライバシは第一級の関心事になっている。
本研究では,テキストプライバシを意識したサーバを,エージェントごとの情報処理制約を考慮したマルチエージェント代入問題に適用する。
論文 参考訳(メタデータ) (2022-04-24T19:19:20Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z) - Differential Privacy of Hierarchical Census Data: An Optimization
Approach [53.29035917495491]
国勢調査局(Census Bureaus)は、個人に関する機密情報を明らかにすることなく、大人口に関する社会経済的データをまとめて公開することに興味を持っている。
最近の出来事では、これらの組織が直面しているプライバシー上の課題がいくつか特定されている。
本稿では,階層的な個人数を解放する新たな差分プライバシ機構を提案する。
論文 参考訳(メタデータ) (2020-06-28T18:19:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。