論文の概要: Generalized Graph Transformer Variational Autoencoder
- arxiv url: http://arxiv.org/abs/2512.00612v1
- Date: Sat, 29 Nov 2025 19:53:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.3252
- Title: Generalized Graph Transformer Variational Autoencoder
- Title(参考訳): 一般化グラフ変換器変分オートエンコーダ
- Authors: Siddhant Karki,
- Abstract要約: 一般化グラフ変換器変分自動符号化(GGT-VAE)を提案する。
本モデルでは,汎用グラフトランスフォーマーアーキテクチャと,リンク予測のための変分オートエンコーダフレームワークを統合した。
いくつかのベンチマークデータセットによる実験結果から,GGT-VAE が一貫したベースライン性能を実現することが示された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph link prediction has long been a central problem in graph representation learning in both network analysis and generative modeling. Recent progress in deep learning has introduced increasingly sophisticated architectures for capturing relational dependencies within graph-structured data. In this work, we propose the Generalized Graph Transformer Variational Autoencoder (GGT-VAE). Our model integrates Generalized Graph Transformer Architecture with Variational Autoencoder framework for link prediction. Unlike prior GraphVAE, GCN, or GNN approaches, GGT-VAE leverages transformer style global self-attention mechanism along with laplacian positional encoding to model structural patterns across nodes into a latent space without relying on message passing. Experimental results on several benchmark datasets demonstrate that GGT-VAE consistently achieves above-baseline performance in terms of ROC-AUC and Average Precision. To the best of our knowledge, this is among the first studies to explore graph structure generation using a generalized graph transformer backbone in a variational framework.
- Abstract(参考訳): グラフリンク予測は、ネットワーク解析と生成モデルの両方において、グラフ表現学習において長い間中心的な問題であった。
ディープラーニングの最近の進歩は、グラフ構造化データ内のリレーショナル依存関係をキャプチャする、ますます高度なアーキテクチャを導入している。
本稿では,GGT-VAE(Generalized Graph Transformer Variational Autoencoder)を提案する。
本モデルでは,汎用グラフトランスフォーマーアーキテクチャと,リンク予測のための変分オートエンコーダフレームワークを統合した。
従来のGraphVAE、GCN、GNNのアプローチとは異なり、GGT-VAEはトランスフォーマースタイルのグローバル自己保持機構とラプラシアン位置符号化を利用して、メッセージパッシングに頼ることなく、ノード間の構造パターンを潜在空間にモデル化する。
いくつかのベンチマークデータセットによる実験結果から、GGT-VAEは、ROC-AUCと平均精度の点において、一貫したベースライン性能を実現することが示された。
我々の知る限りでは、これは変分フレームワークにおける一般化グラフ変換器のバックボーンを用いたグラフ構造生成を初めて研究した研究の1つである。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Automatic Graph Topology-Aware Transformer [50.2807041149784]
マイクロレベルおよびマクロレベルの設計による包括的グラフトランスフォーマー検索空間を構築した。
EGTASはマクロレベルでのグラフトランスフォーマートポロジとマイクロレベルでのグラフ認識戦略を進化させる。
グラフレベルおよびノードレベルのタスクに対して,EGTASの有効性を示す。
論文 参考訳(メタデータ) (2024-05-30T07:44:31Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - Transformers over Directed Acyclic Graphs [6.263470141349622]
有向非巡回グラフ(DAG)上の変換器について検討し,DAGに適したアーキテクチャ適応を提案する。
グラフトランスフォーマーは、DAGに適したグラフニューラルネットワークを概ね上回り、品質と効率の両面でSOTAグラフトランスフォーマーの性能を向上させるのに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-24T12:04:52Z) - Transformer for Graphs: An Overview from Architecture Perspective [86.3545861392215]
グラフのために既存のTransformerモデルを分類し、様々なグラフタスクでそれらの効果を体系的に研究することが不可欠です。
まず、既存のモデルを分解し、バニラ変換器にグラフ情報を組み込む典型的な3つの方法を結論付けます。
本実験は,Transformerにおける現在のグラフ固有のモジュールの利点を確認し,異なる種類のグラフタスクにおけるそれらの利点を明らかにする。
論文 参考訳(メタデータ) (2022-02-17T06:02:06Z) - Rethinking Graph Transformers with Spectral Attention [13.068288784805901]
我々は、学習された位置符号化(LPE)を用いて、与えられたグラフ内の各ノードの位置を学習するtextitSpectral Attention Network$(SAN)を提示する。
ラプラシアンの完全なスペクトルを利用することで、我々のモデルは理論上グラフの区別に強力であり、類似のサブ構造を共鳴からよりよく検出することができる。
我々のモデルは最先端のGNNよりも同等かそれ以上の性能を発揮し、あらゆる注目ベースモデルよりも広いマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-06-07T18:11:11Z) - Heterogeneous Graph Transformer [49.675064816860505]
Webスケールの不均一グラフモデリングのための不均一グラフ変換器(HGT)アーキテクチャ
動的ヘテロジニアスグラフを扱うために、HGTに相対時間符号化手法を導入する。
Web スケールのグラフデータを扱うため,ヘテロジニアスなミニバッチグラフサンプリングアルゴリズム--HGSampling--を設計し,効率的かつスケーラブルなトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-03T04:49:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。