論文の概要: Neuroscience-Inspired Memory Replay for Continual Learning: A Comparative Study of Predictive Coding and Backpropagation-Based Strategies
- arxiv url: http://arxiv.org/abs/2512.00619v1
- Date: Sat, 29 Nov 2025 20:20:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.329531
- Title: Neuroscience-Inspired Memory Replay for Continual Learning: A Comparative Study of Predictive Coding and Backpropagation-Based Strategies
- Title(参考訳): 連続学習のための神経科学にインスパイアされた記憶リプレイ:予測符号化とバックプロパゲーションに基づく戦略の比較研究
- Authors: Goutham Nalagatla, Shreyas Grandhe,
- Abstract要約: 本稿では,予測符号化の原理を活かした生成的リプレイのための新しいフレームワークを提案する。
実験結果から,予測符号化によるリプレイは保持性能に優れることが示された。
提案フレームワークは,生物記憶プロセスと人工学習システムとの関係について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Continual learning remains a fundamental challenge in artificial intelligence, with catastrophic forgetting posing a significant barrier to deploying neural networks in dynamic environments. Inspired by biological memory consolidation mechanisms, we propose a novel framework for generative replay that leverages predictive coding principles to mitigate forgetting. We present a comprehensive comparison between predictive coding-based and backpropagation-based gen- erative replay strategies, evaluating their effectiveness on task retention and transfer efficiency across multiple benchmark datasets. Our experimental results demonstrate that predictive coding-based replay achieves superior retention performance (average 15.3% improvement) while maintaining competitive transfer efficiency, suggesting that biologically-inspired mechanisms can offer principled solutions to continual learning challenges. The proposed framework provides insights into the relationship between biological memory processes and artificial learning systems, opening new avenues for neuroscience-inspired AI research.
- Abstract(参考訳): ニューラルネットワークを動的環境にデプロイする上で、破滅的な忘れ物が重要な障壁となっている。
そこで本研究では,生物記憶統合機構に触発されて,予測符号化の原理を活かし,忘れを緩和する生成的リプレイの枠組みを提案する。
本稿では,複数のベンチマークデータセット間のタスク保持と転送効率を評価するため,予測符号化とバックプロパゲーションに基づくジェネリックリプレイ戦略を総合的に比較する。
実験の結果, 予測符号化に基づくリプレイは, 高い保持性能(平均15.3%の改善)を達成し, 競争効率を維持しながら, 生物学的にインスパイアされたメカニズムが, 継続的な学習課題に対する原則的解決をもたらすことが示唆された。
提案したフレームワークは、生物学的記憶プロセスと人工知能システムとの関係に関する洞察を提供し、神経科学にインスパイアされたAI研究のための新たな道を開く。
関連論文リスト
- PISA: A Pragmatic Psych-Inspired Unified Memory System for Enhanced AI Agency [50.712873697511206]
既存の作業は、多種多様なタスクへの適応性に欠けることが多く、AIエージェントメモリの構成的およびタスク指向の役割を見落としている。
PISAは,メモリを構築的かつ適応的なプロセスとして扱う,実践的でサイコにインスパイアされた統合メモリシステムである。
既存のLOCOMOベンチマークと新たに提案したデータ解析タスクのAggQAベンチマークに基づいて,PISAが適応性と長期的知識保持を大幅に向上させることで,新たな最先端技術を設定することを確認した。
論文 参考訳(メタデータ) (2025-10-12T10:34:35Z) - Noise-based reward-modulated learning [1.0851051226732167]
雑音に基づく報酬変調学習は、新しいシナプス的可塑性規則である。
NRLはバックプロパゲーションを用いて最適化されたベースラインに匹敵する性能を示す。
その結果,低消費電力適応システムにおける雑音駆動型脳誘発学習の可能性が浮き彫りになった。
論文 参考訳(メタデータ) (2025-03-31T11:35:23Z) - Stochastic Engrams for Efficient Continual Learning with Binarized Neural Networks [4.014396794141682]
我々は,メタプラスティック二項化ニューラルネットワーク(mBNN)のゲーティング機構として,可塑性活性化エングラムを統合した新しいアプローチを提案する。
以上の結果から, (A) トレードオフに対する安定性の向上, (B) メモリ集中度低下, (C) 双項化アーキテクチャの性能向上が示された。
論文 参考訳(メタデータ) (2025-03-27T12:21:00Z) - Super Level Sets and Exponential Decay: A Synergistic Approach to Stable Neural Network Training [0.0]
指数減衰と高度な反オーバーフィッティング戦略を統合する動的学習率アルゴリズムを開発した。
適応学習率の影響を受けて、損失関数の超レベル集合が常に連結であることを証明する。
論文 参考訳(メタデータ) (2024-09-25T09:27:17Z) - Brain-Inspired Continual Learning-Robust Feature Distillation and Re-Consolidation for Class Incremental Learning [0.0]
本稿では, 特徴蒸留と再固化という2つの基本概念からなる新しい枠組みを提案する。
ロバスト・リハーサル(Robust Rehearsal)と名付けられた我々のフレームワークは、継続的な学習システムに固有の破滅的な忘れ込みの課題に対処する。
CIFAR10、CIFAR100、実世界のヘリコプター姿勢データセットで実施された実験は、ロバスト・リハーサルで訓練されたCLモデルの優れた性能を示す。
論文 参考訳(メタデータ) (2024-04-22T21:30:11Z) - Improving Performance in Continual Learning Tasks using Bio-Inspired
Architectures [4.2903672492917755]
我々は,シナプスの可塑性機構とニューロ変調を組み込んだ,生物学的にインスパイアされた軽量ニューラルネットワークアーキテクチャを開発した。
提案手法により,Split-MNIST,Split-CIFAR-10,Split-CIFAR-100データセット上でのオンライン連続学習性能が向上する。
さらに,鍵設計概念を他のバックプロパゲーションに基づく連続学習アルゴリズムに統合することにより,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-08-08T19:12:52Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - The Predictive Forward-Forward Algorithm [79.07468367923619]
本稿では,ニューラルネットワークにおける信頼割当を行うための予測フォワード(PFF)アルゴリズムを提案する。
我々は,有向生成回路と表現回路を同時に同時に学習する,新しい動的リカレントニューラルネットワークを設計する。
PFFは効率よく学習し、学習信号を伝達し、フォワードパスのみでシナプスを更新する。
論文 参考訳(メタデータ) (2023-01-04T05:34:48Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
本稿では,再帰的ネットワークにおける自己注意が勾配伝播に与える影響を公式に分析する。
長期的な依存関係を捉えようとするとき、勾配をなくすことの問題を緩和することを証明する。
本稿では,スパース自己アテンションを反復的にスケーラブルに利用するための関連性スクリーニング機構を提案する。
論文 参考訳(メタデータ) (2020-06-16T19:24:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。