論文の概要: Automating modeling in mechanics: LLMs as designers of physics-constrained neural networks for constitutive modeling of materials
- arxiv url: http://arxiv.org/abs/2512.01735v1
- Date: Mon, 01 Dec 2025 14:42:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.901424
- Title: Automating modeling in mechanics: LLMs as designers of physics-constrained neural networks for constitutive modeling of materials
- Title(参考訳): メカニクスにおける自動モデリング:材料構成モデリングのための物理制約ニューラルネットワークの設計者としてのLLM
- Authors: Marius Tacke, Matthias Busch, Kian Abdolazizi, Jonas Eichinger, Kevin Linka, Christian Cyron, Roland Aydin,
- Abstract要約: 大規模言語モデル(LLM)ベースのエージェントフレームワークは、タスク固有のエージェントを動的に生成するパラダイムをますます採用している。
我々は、エージェントだけでなく、科学や工学のタスクのための特殊なソフトウェアモジュールもオンデマンドで生成できることを示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language model (LLM)-based agentic frameworks increasingly adopt the paradigm of dynamically generating task-specific agents. We suggest that not only agents but also specialized software modules for scientific and engineering tasks can be generated on demand. We demonstrate this concept in the field of solid mechanics. There, so-called constitutive models are required to describe the relationship between mechanical stress and body deformation. Constitutive models are essential for both the scientific understanding and industrial application of materials. However, even recent data-driven methods of constitutive modeling, such as constitutive artificial neural networks (CANNs), still require substantial expert knowledge and human labor. We present a framework in which an LLM generates a CANN on demand, tailored to a given material class and dataset provided by the user. The framework covers LLM-based architecture selection, integration of physical constraints, and complete code generation. Evaluation on three benchmark problems demonstrates that LLM-generated CANNs achieve accuracy comparable to or greater than manually engineered counterparts, while also exhibiting reliable generalization to unseen loading scenarios and extrapolation to large deformations. These findings indicate that LLM-based generation of physics-constrained neural networks can substantially reduce the expertise required for constitutive modeling and represent a step toward practical end-to-end automation.
- Abstract(参考訳): 大規模言語モデル(LLM)ベースのエージェントフレームワークは、タスク固有のエージェントを動的に生成するパラダイムをますます採用している。
我々は、エージェントだけでなく、科学や工学のタスクのための特殊なソフトウェアモジュールもオンデマンドで生成できることを示唆している。
この概念を固体力学の分野で実証する。
そこでは, 機械的応力と身体変形の関係を記述するために, いわゆる構成モデルが必要である。
構成モデルは、物質の科学的理解と工業的応用の両方に不可欠である。
しかし、構成的ニューラルネットワーク(CANN)のような構成的モデリングの最近のデータ駆動手法でさえ、かなりの専門知識と人間の労働力を必要とする。
本稿では,LCMが要求に応じてCANNを生成するフレームワークについて述べる。
このフレームワークはLLMベースのアーキテクチャ選択、物理的な制約の統合、完全なコード生成をカバーしている。
3つのベンチマーク問題に対する評価は、LCM生成のCANNが手作業で設計したものと同等かそれ以上の精度を達成することを示し、また、見つからないロードシナリオへの信頼性の高い一般化と大きな変形に対する補間を示す。
これらの結果から,LLMによる物理制約ニューラルネットワークの生成は,構成的モデリングに必要な専門知識を大幅に削減し,実用的なエンドツーエンド自動化への一歩となることが示唆された。
関連論文リスト
- SVTime: Small Time Series Forecasting Models Informed by "Physics" of Large Vision Model Forecasters [86.38433605933515]
動的Webコンテンツを分析するには時系列AIが不可欠だ。
エネルギー集約的なトレーニング、推論、ハードウェアの要求を考えると、大きなモデルを1フィットのソリューションとして使うと、二酸化炭素のフットプリントと持続可能性に対する深刻な懸念が浮かび上がっています。
本稿では、長期時系列予測(LTSF)のための大型ビジョンモデル(LVM)予測器にインスパイアされた新しい小型モデルSVTimeを紹介する。
論文 参考訳(メタデータ) (2025-10-10T18:42:23Z) - Speed Always Wins: A Survey on Efficient Architectures for Large Language Models [51.817121227562964]
大規模言語モデル(LLM)は、言語理解、生成、推論、マルチモーダルモデルの能力境界の押し付けにおいて、素晴らしい結果をもたらしている。
トランスフォーマーモデルは、現代のLLMの基礎として、優れたスケーリング特性を備えた強力なベースラインを提供する。
従来のトランスフォーマーアーキテクチャは、相当な計算を必要とし、大規模なトレーニングと実践的なデプロイメントに重大な障害を生じさせる。
論文 参考訳(メタデータ) (2025-08-13T14:13:46Z) - Continual Learning for Generative AI: From LLMs to MLLMs and Beyond [56.29231194002407]
本稿では,主流生成型AIモデルに対する連続学習手法の総合的な調査を行う。
これらのアプローチをアーキテクチャベース、正規化ベース、リプレイベースという3つのパラダイムに分類する。
我々は、トレーニング目標、ベンチマーク、コアバックボーンを含む、異なる生成モデルに対する連続的な学習設定を分析する。
論文 参考訳(メタデータ) (2025-06-16T02:27:25Z) - Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
本稿では,イベントログのモデリング,インテリジェントなモデリングアシスタント,モデリング操作の生成を組み合わせた概念的フレームワークを提案する。
特に、アーキテクチャは、設計者がシステムを指定するのを助け、その操作をグラフィカルなモデリング環境内で記録し、関連する操作を自動的に推奨する、モデリングコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-08-26T13:26:44Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.67321902882617]
本稿では,オープンソースのLLMをトレーニングし,モデリングやソルバコードの開発を最適化する実行可能なパスを提案する。
この研究は、実用的なOR問題の解決においてLLMを評価するための最初の産業ベンチマークであるIndustrialORも導入した。
論文 参考訳(メタデータ) (2024-05-28T01:55:35Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML法は、非線形構造の地震応答をモデル化するために、科学的原理と物理法則をディープニューラルネットワークに統合する。
運動方程式を操作することは、システムの非線形性を学習し、物理的に解釈可能な結果の中で解を閉じ込めるのに役立つ。
結果、既存の物理誘導LSTMモデルよりも複雑なデータを処理し、他の非物理データ駆動ネットワークより優れている。
論文 参考訳(メタデータ) (2024-02-28T02:16:03Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Thermodynamics-based Artificial Neural Networks for constitutive
modeling [0.0]
本稿では,物質点レベルでのひずみ速度独立過程のモデリングのための,データ駆動型物理ベースニューラルネットワークの新たなクラスを提案する。
熱力学の2つの基本原理は、自動微分を利用してネットワークのアーキテクチャに符号化される。
本研究では, 伸縮硬化および軟化ひずみを有するエラスト塑性材料をモデル化するためのTANNの広範囲な適用性を示す。
論文 参考訳(メタデータ) (2020-05-25T15:56:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。