論文の概要: Approximate pushforward designs and image bounds on approximations
- arxiv url: http://arxiv.org/abs/2512.01858v1
- Date: Mon, 01 Dec 2025 16:44:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-02 19:46:34.963726
- Title: Approximate pushforward designs and image bounds on approximations
- Title(参考訳): 近似的プッシュフォワード設計と近似上の画像境界
- Authors: Jakub Czartowski, Adam Sawicki, Karol Życzkowski,
- Abstract要約: 複素射影空間から得られるプッシュフォワード設計の近似パラメータに境界を導出する。
混合状態の場合、対称部分空間構造を利用して境界を洗練する。
数値シミュレーションは,低次元シナリオにおけるほぼ最適性を示す理論結果を支持する。
- 参考スコア(独自算出の注目度): 2.676349883103404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We extend the framework of quantum pushforward designs to the approximate setting, where averaging is achieved only up to finite precision. Using Schatten $p$-norms and Lipschitz continuity arguments, we derive bounds on the approximation parameters of pushforward designs obtained from complex projective spaces, including simplices, mixed states, and quantum channels. In the mixed-state case, we refine the bounds by exploiting the symmetric subspace structure, leading to asymptotically tighter estimates. Numerical simulations support our theoretical results, showing near-optimality in low-dimensional scenarios.
- Abstract(参考訳): 量子プッシュフォワード設計の枠組みを近似的な設定に拡張し、平均化は有限の精度で達成される。
Schatten $p$-norms と Lipschitz の連続性引数を用いて、単純性、混合状態、量子チャネルを含む複素射影空間から得られるプッシュフォワード設計の近似パラメータのバウンダリを導出する。
混合状態の場合、対称部分空間構造を利用して境界を洗練し、漸近的により厳密な推定をもたらす。
数値シミュレーションは,低次元シナリオにおけるほぼ最適性を示す理論結果を支持する。
関連論文リスト
- Revisiting Zeroth-Order Optimization: Minimum-Variance Two-Point Estimators and Directionally Aligned Perturbations [57.179679246370114]
乱摂動の分布は, 摂動段差がゼロになる傾向にあるため, 推定子の分散を最小限に抑える。
以上の結果から, 一定の長さを維持するのではなく, 真の勾配に方向を合わせることが可能であることが示唆された。
論文 参考訳(メタデータ) (2025-10-22T19:06:39Z) - On the Optimal Construction of Unbiased Gradient Estimators for Zeroth-Order Optimization [57.179679246370114]
既存の手法の潜在的な制限は、ステップサイズが提案されない限り、ほとんどの摂動推定器に固有のバイアスである。
本稿では, 良好な構成を維持しつつ, バイアスを排除した非バイアス勾配スケーリング推定器のファミリーを提案する。
論文 参考訳(メタデータ) (2025-10-22T18:25:43Z) - Learning Overspecified Gaussian Mixtures Exponentially Fast with the EM Algorithm [5.625796693054093]
過特定ガウス混合モデルに適用した場合のEMアルゴリズムの収束特性について検討する。
集団EMアルゴリズムはクルバック・リーブラー距離(KL)において指数関数的に高速に収束することを示した。
論文 参考訳(メタデータ) (2025-06-13T14:57:57Z) - Expected Information Gain Estimation via Density Approximations: Sample Allocation and Dimension Reduction [0.40964539027092906]
一般非線形/非ガウス的設定におけるEIG推定のためのフレキシブルトランスポートに基づくスキームを定式化する。
この最適サンプル割り当てにより、得られたEIG推定器のMSEは標準ネストされたモンテカルロスキームよりも高速に収束することを示す。
次に、パラメータを投影し、低次元部分空間に観測することで失われる相互情報の勾配に基づく上界を導出することにより、高次元でのEIGの推定に対処する。
論文 参考訳(メタデータ) (2024-11-13T07:22:50Z) - Last-Iterate Convergence of Adaptive Riemannian Gradient Descent for Equilibrium Computation [52.73824786627612]
本稿では,テクスト幾何学的強単調ゲームに対する新たな収束結果を確立する。
我々のキーとなる結果は、RGDがテクスト幾何学的手法で最終定位線形収束を実現することを示しています。
全体として、ユークリッド設定を超えるゲームに対して、幾何学的に非依存な最終点収束解析を初めて提示する。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Stochastic parameter optimization analysis of dynamical quantum critical phenomena in long-range transverse-field Ising chain [0.0]
一次元長次元逆場イジングモデルの量子相転移について検討する。
シミュレーションでは, 臨界点と普遍性に関する事前知識がなくても, サンプリング対象のパラメータを自動的に決定する。
後者の2つの普遍性境界として$sigma = 7/4$を支持する数値的な証拠を得ることに成功した。
論文 参考訳(メタデータ) (2023-05-23T14:46:16Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
パラメトリックダウンコンバージョンによって生成される絡み合ったツインビームは、画像指向アプリケーションで好まれるソースである。
本研究では,時間消費数値シミュレーションと非現実的な平面波ポンプ理論のギャップを埋めることを目的とした半解析モデルを提案する。
論文 参考訳(メタデータ) (2023-01-18T11:29:49Z) - Distributed Sketching for Randomized Optimization: Exact
Characterization, Concentration and Lower Bounds [54.51566432934556]
我々はヘシアンの形成が困難である問題に対する分散最適化法を検討する。
ランダム化されたスケッチを利用して、問題の次元を減らし、プライバシを保ち、非同期分散システムにおけるストラグラーレジリエンスを改善します。
論文 参考訳(メタデータ) (2022-03-18T05:49:13Z) - Inverse design of photonic devices with strict foundry fabrication
constraints [55.41644538483948]
本稿では,ナノフォトニクス素子の逆設計法を提案し,設計が厳密な長さの制約を満たすことを保証した。
本手法の性能と信頼性を,いくつかの共通集積フォトニック部品を設計することによって実証する。
論文 参考訳(メタデータ) (2022-01-31T02:27:25Z) - Accelerated, Optimal, and Parallel: Some Results on Model-Based
Stochastic Optimization [33.71051480619541]
凸最適化問題を解決するためのモデルベース手法の近似近位点(aProx)ファミリを拡張します。
我々は、非漸近収束保証と、ミニバッチサイズの線形スピードアップを提供する加速スキームを提供する。
我々は,「補間」問題に対する新しい基本定数を同定し,収束率の改善と下界の整合性を示す。
論文 参考訳(メタデータ) (2021-01-07T18:58:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。