論文の概要: Deep Research: A Systematic Survey
- arxiv url: http://arxiv.org/abs/2512.02038v1
- Date: Mon, 24 Nov 2025 15:28:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.520045
- Title: Deep Research: A Systematic Survey
- Title(参考訳): Deep Research: システム調査
- Authors: Zhengliang Shi, Yiqun Chen, Haitao Li, Weiwei Sun, Shiyu Ni, Yougang Lyu, Run-Ze Fan, Bowen Jin, Yixuan Weng, Minjun Zhu, Qiujie Xie, Xinyu Guo, Qu Yang, Jiayi Wu, Jujia Zhao, Xiaqiang Tang, Xinbei Ma, Cunxiang Wang, Jiaxin Mao, Qingyao Ai, Jen-Tse Huang, Wenxuan Wang, Yue Zhang, Yiming Yang, Zhaopeng Tu, Zhaochun Ren,
- Abstract要約: Deep Research (DR)は、大規模言語モデルの推論能力と検索エンジンなどの外部ツールを組み合わせることを目的としている。
本調査は,深層研究システムの包括的かつ体系的な概要を提示する。
- 参考スコア(独自算出の注目度): 118.82795024422722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have rapidly evolved from text generators into powerful problem solvers. Yet, many open tasks demand critical thinking, multi-source, and verifiable outputs, which are beyond single-shot prompting or standard retrieval-augmented generation. Recently, numerous studies have explored Deep Research (DR), which aims to combine the reasoning capabilities of LLMs with external tools, such as search engines, thereby empowering LLMs to act as research agents capable of completing complex, open-ended tasks. This survey presents a comprehensive and systematic overview of deep research systems, including a clear roadmap, foundational components, practical implementation techniques, important challenges, and future directions. Specifically, our main contributions are as follows: (i) we formalize a three-stage roadmap and distinguish deep research from related paradigms; (ii) we introduce four key components: query planning, information acquisition, memory management, and answer generation, each paired with fine-grained sub-taxonomies; (iii) we summarize optimization techniques, including prompting, supervised fine-tuning, and agentic reinforcement learning; and (iv) we consolidate evaluation criteria and open challenges, aiming to guide and facilitate future development. As the field of deep research continues to evolve rapidly, we are committed to continuously updating this survey to reflect the latest progress in this area.
- Abstract(参考訳): 大規模言語モデル(LLM)は、テキスト生成器から強力な問題解決器へと急速に進化してきた。
しかし、多くのオープンタスクは批判的思考、複数ソース、検証可能な出力を必要とする。
近年,LLMの推論能力と検索エンジンなどの外部ツールを組み合わせることを目的としたDeep Research (DR) の研究が盛んに行われている。
本調査では, 明確なロードマップ, 基礎的構成要素, 実践的実装技術, 重要な課題, 今後の方向性など, 深層研究システムの包括的かつ体系的な概要を示す。
特に、主な貢献は以下の通りである。
(i)3段階のロードマップを定式化し、関連するパラダイムと深い研究を区別する。
(II)クエリ計画、情報取得、メモリ管理、回答生成の4つの重要なコンポーネントを紹介します。
三 エージェント強化学習の推進、指導、指導を含む最適化手法を要約する。
(4) 今後の開発を指導・促進することを目的とした評価基準と課題のオープン化を図る。
深層研究の分野が急速に発展していく中、我々はこの領域の最新の進歩を反映して、この調査を継続的に更新していくことにコミットしている。
関連論文リスト
- A Survey of Long-Document Retrieval in the PLM and LLM Era [19.07164308496093]
この調査は、LDR(Long-Docment Search)の最初の包括的治療を提供する。
古典的語彙モデルと初期ニューラルモデルから近代事前学習モデル(PLM)および大規模言語モデル(LLM)への進化を体系化する。
我々は、ドメイン固有のアプリケーション、特別な評価リソースをレビューし、効率のトレードオフ、マルチモーダルアライメント、忠実さといった重要なオープン課題を概説する。
論文 参考訳(メタデータ) (2025-09-09T13:57:53Z) - Deep Research: A Survey of Autonomous Research Agents [33.96146020332329]
大規模言語モデル(LLM)の急速な進歩は、複雑なタスクを自律的に実行可能なエージェントシステムの開発を促している。
これらの制約を克服するため、深層研究のパラダイムが提案され、エージェントは、Webベースの証拠に根ざした包括的で忠実な分析レポートを生成するために、計画、検索、合成に積極的に従事する。
本稿では,計画,質問開発,Web探索,レポート生成の4段階からなるディープリサーチパイプラインの体系的概要について述べる。
論文 参考訳(メタデータ) (2025-08-18T09:26:14Z) - A Survey of LLM-based Deep Search Agents: Paradigm, Optimization, Evaluation, and Challenges [30.146391942071126]
大規模言語モデル (LLM) はウェブ検索に革命をもたらした。
これらのエージェントは、ユーザの意図や環境状況を理解することができる。
本調査は,検索エージェントの系統的分析を初めて行った。
論文 参考訳(メタデータ) (2025-08-03T08:02:51Z) - A Survey on Code Generation with LLM-based Agents [61.474191493322415]
大規模言語モデル(LLM)を利用したコード生成エージェントは、ソフトウェア開発パラダイムに革命をもたらしている。
LLMは3つのコア特徴によって特徴づけられる。
本稿では,LLMに基づくコード生成エージェントの分野を体系的に調査する。
論文 参考訳(メタデータ) (2025-07-31T18:17:36Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。