論文の概要: Mapping of Lesion Images to Somatic Mutations
- arxiv url: http://arxiv.org/abs/2512.02162v1
- Date: Mon, 01 Dec 2025 19:48:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.585491
- Title: Mapping of Lesion Images to Somatic Mutations
- Title(参考訳): 病変画像の体性変異へのマッピング
- Authors: Rahul Mehta,
- Abstract要約: そこで我々は,患者の身体的変異プロファイルを,対応する医用画像に基づいて決定するために,潜伏変数モデルを構築した。
特定の突然変異数に対するモデルの予測性能と、変異の発生を正確に予測する能力を示す。
- 参考スコア(独自算出の注目度): 0.46533841420895894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical imaging is a critical initial tool used by clinicians to determine a patient's cancer diagnosis, allowing for faster intervention and more reliable patient prognosis. At subsequent stages of patient diagnosis, genetic information is extracted to help select specific patient treatment options. As the efficacy of cancer treatment often relies on early diagnosis and treatment, we build a deep latent variable model to determine patients' somatic mutation profiles based on their corresponding medical images. We first introduce a point cloud representation of lesions images to allow for invariance to the imaging modality. We then propose, LLOST, a model with dual variational autoencoders coupled together by a separate shared latent space that unifies features from the lesion point clouds and counts of distinct somatic mutations. Therefore our model consists of three latent space, each of which is learned with a conditional normalizing flow prior to account for the diverse distributions of each domain. We conduct qualitative and quantitative experiments on de-identified medical images from The Cancer Imaging Archive and the corresponding somatic mutations from the Pan Cancer dataset of The Cancer Genomic Archive. We show the model's predictive performance on the counts of specific mutations as well as it's ability to accurately predict the occurrence of mutations. In particular, shared patterns between the imaging and somatic mutation domain that reflect cancer type. We conclude with a remark on how to improve the model and possible future avenues of research to include other genetic domains.
- Abstract(参考訳): 医療画像は、患者の癌診断を決定するために臨床医が使用する重要な初期ツールであり、迅速な介入とより信頼性の高い患者の予後を可能にする。
患者の診断の次の段階では、特定の患者治療オプションを選択するのに役立つ遺伝子情報を抽出する。
がん治療の効果は早期診断と治療に大きく依存することが多いため, 患者の身体的変異プロファイルを, 対応する医用画像に基づいて決定するために, 潜伏変動モデルを構築した。
まず,病変画像の点雲表現を導入し,画像のモダリティに不変性を持たせる。
次に, 2つの変分オートエンコーダを持つモデル LLOST を提案する。
したがって,本モデルは3つの潜在空間から構成され,各領域の多様分布を考慮した条件付き正規化フローで学習される。
The Cancer Imaging Archiveと、The Cancer Genomic ArchiveのPan Cancerデータセットの体細胞突然変異に関する質的および定量的実験を行った。
特定の突然変異数に対するモデルの予測性能と、変異の発生を正確に予測する能力を示す。
特に、がんの型を反映する画像と体細胞突然変異ドメインの共有パターン。
我々は、モデルの改善と、他の遺伝子ドメインを含む研究の今後の道のりについて、結論を述べた。
関連論文リスト
- Interactive Tumor Progression Modeling via Sketch-Based Image Editing [54.47725383502915]
腫瘍進行編集のためのスケッチベース拡散モデルであるSkEditTumorを提案する。
スケッチを構造的先行として活用することにより,構造的整合性と視覚的リアリズムを維持しつつ,腫瘍領域の精密な修正を可能にする。
私たちのコントリビューションには、医用画像編集のための拡散モデルとスケッチの新たな統合、腫瘍進行の可視化のきめ細かい制御、複数のデータセットにわたる広範な検証などが含まれています。
論文 参考訳(メタデータ) (2025-03-10T00:04:19Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
我々は,脳MRIと胸部X線による3つの時系列的ベンチマークデータセットを用いて,対物画像生成法について検討した。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Individualized multi-horizon MRI trajectory prediction for Alzheimer's Disease [0.0]
我々は、新しいアーキテクチャをトレーニングして潜伏空間の分布を構築し、そこからサンプルを抽出し、将来的な解剖学的変化の予測を生成する。
いくつかの代替手法と比較することにより,より高解像度でより個別化された画像を生成することを示す。
論文 参考訳(メタデータ) (2024-08-04T13:09:06Z) - MMFusion: Multi-modality Diffusion Model for Lymph Node Metastasis Diagnosis in Esophageal Cancer [13.74067035373274]
CT画像に基づくリンパ節転移診断のためのマルチモーダルな不均一グラフに基づく条件付き特徴誘導拡散モデルを提案する。
本稿では, 悪性腫瘍とリンパ節像の関連性, 優先性を明らかにすることを目的として, マスク付き関係表現学習戦略を提案する。
論文 参考訳(メタデータ) (2024-05-15T17:52:00Z) - Heterogeneous Image-based Classification Using Distributional Data
Analysis [0.1471145775252885]
画素レベルの特徴の確率(量子)分布を組み込んだ新しい画像ベース分布データ解析(DDA)手法を開発した。
提案手法の特徴として, (i) 画像内の不均一性を考慮し, (ii) 分布全体にわたる粒度の情報を取り込み, (iii) がん応用における未登録画像に対する画像サイズの変化に対処する能力がある。
論文 参考訳(メタデータ) (2024-03-11T19:41:40Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Domain Invariant Model with Graph Convolutional Network for Mammogram
Classification [49.691629817104925]
グラフ畳み込みネットワークを用いたドメイン不変モデル(DIM-GCN)を提案する。
まず,潜伏変数を病原性その他の疾患関連部位に明示的に分解するベイズネットワークを提案する。
マクロな特徴をよりよく捉えるために、我々は、GCN(Graph Convolutional Network)を介して、観察された臨床特性を再構築の目的として活用する。
論文 参考訳(メタデータ) (2022-04-21T08:23:44Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Early Melanoma Diagnosis with Sequential Dermoscopic Images [10.487636624052564]
悪性黒色腫早期診断のための既存のアルゴリズムは、病変の単一のタイムポイント画像を用いて開発されている。
そこで本研究では,皮膚内視鏡画像を用いた早期メラノーマ診断のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-12T13:05:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。