論文の概要: Reproducing and Extending RaDelft 4D Radar with Camera-Assisted Labels
- arxiv url: http://arxiv.org/abs/2512.02394v1
- Date: Tue, 02 Dec 2025 04:12:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.713079
- Title: Reproducing and Extending RaDelft 4D Radar with Camera-Assisted Labels
- Title(参考訳): カメラ支援ラベルを用いたRaDelft 4Dレーダの再生・拡張
- Authors: Kejia Hu, Mohammed Alsakabi, John M. Dolan, Ozan K. Tonguz,
- Abstract要約: カメラ誘導型レーダラベリングパイプラインは,人間のアノテーションに頼ることなく,レーダポイント雲の正確なラベルを生成することができることを示す。
これらの結果は、研究コミュニティがラベル付き4Dレーダデータのトレーニングと評価を可能にする再現可能な枠組みを確立する。
- 参考スコア(独自算出の注目度): 15.456760941404873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in 4D radar highlight its potential for robust environment perception under adverse conditions, yet progress in radar semantic segmentation remains constrained by the scarcity of open source datasets and labels. The RaDelft data set, although seminal, provides only LiDAR annotations and no public code to generate radar labels, limiting reproducibility and downstream research. In this work, we reproduce the numerical results of the RaDelft group and demonstrate that a camera-guided radar labeling pipeline can generate accurate labels for radar point clouds without relying on human annotations. By projecting radar point clouds into camera-based semantic segmentation and applying spatial clustering, we create labels that significantly enhance the accuracy of radar labels. These results establish a reproducible framework that allows the research community to train and evaluate the labeled 4D radar data. In addition, we study and quantify how different fog levels affect the radar labeling performance.
- Abstract(参考訳): 4Dレーダの最近の進歩は、悪条件下での堅牢な環境認識の可能性を強調しているが、レーダセマンティックセグメンテーションの進展は、オープンソースのデータセットやラベルの不足によって制限されている。
RaDelftデータセットは、セミナルではあるが、LiDARアノテーションのみを提供し、レーダラベルを生成するための公開コードを提供し、再現性や下流の研究を制限する。
本研究では,RaDelftグループの数値結果を再現し,カメラ誘導レーダラベリングパイプラインが人間のアノテーションに頼ることなく,レーダ点雲の正確なラベルを生成できることを実証する。
レーダポイント雲をカメラベースセマンティックセグメンテーションに投影し、空間クラスタリングを適用することにより、レーダラベルの精度を大幅に向上するラベルを作成する。
これらの結果は、研究コミュニティがラベル付き4Dレーダデータのトレーニングと評価を可能にする再現可能な枠組みを確立する。
さらに,各種霧レベルがレーダラベリング性能に与える影響について検討し,定量的に検討した。
関連論文リスト
- RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
本稿では,柱型物体検出ネットワークRadarPillarsを提案する。
放射速度データを分解することにより、RadarPillarsは、View-of-Delftデータセットの最先端検出結果を大幅に上回る。
これはパラメータ数を大幅に削減し、既存のメソッドを効率面で上回り、エッジデバイス上でのリアルタイムパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-08-09T12:13:38Z) - SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
レーダー生データは、しばしば過剰なノイズを含むが、レーダー点雲は限られた情報しか保持しない。
本稿では,適応的なサブサンプリング手法と,空間パターンを利用したネットワークアーキテクチャを提案する。
RADIalデータセットの実験により,SparseRadNetはオブジェクト検出における最先端(SOTA)性能を超え,自由空間セグメンテーションにおけるSOTA精度に近づいた。
論文 参考訳(メタデータ) (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Bootstrapping Autonomous Driving Radars with Self-Supervised Learning [13.13679517730015]
レーダモデルの訓練は、大規模レーダデータの注釈付けのコストと難しさによって妨げられている。
本研究では,未ラベルのレーダデータを事前学習型レーダのみの埋め込みに活用して,自律型認識タスクを実現するための自己教師型学習フレームワークを提案する。
下流オブジェクト検出に使用する場合、提案するセルフスーパービジョンフレームワークが、最先端の教師付きベースラインの精度をmAPで5.8%向上できることを実証する。
論文 参考訳(メタデータ) (2023-12-07T18:38:39Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
この課題に対処し、動的オブジェクトの3D検出を改善するために、双方向LiDAR-Radar融合フレームワーク、Bi-LRFusionを導入する。
我々はnuScenesとORRデータセットに関する広範な実験を行い、我々のBi-LRFusionが動的オブジェクトを検出するための最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-06-02T10:57:41Z) - Radar Artifact Labeling Framework (RALF): Method for Plausible Radar
Detections in Datasets [2.5899040911480187]
粗いレーダ点雲のラベル付けのためのクロスセンサレーダアーチファクトラベルフレームワーク(RALF)を提案する。
RALFは、レーダーの生検出のための可視性ラベルを提供し、アーティファクトとターゲットを区別する。
半手動ラベル付き地上真理データセットの3.28cdot106$ポイントの誤差測定値を評価することにより,結果を検証する。
論文 参考訳(メタデータ) (2020-12-03T15:11:31Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。