論文の概要: ADORE: Autonomous Domain-Oriented Relevance Engine for E-commerce
- arxiv url: http://arxiv.org/abs/2512.02555v1
- Date: Tue, 02 Dec 2025 09:25:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-03 21:04:45.804057
- Title: ADORE: Autonomous Domain-Oriented Relevance Engine for E-commerce
- Title(参考訳): ADORE:Eコマースのための自律的なドメイン指向の関連エンジン
- Authors: Zheng Fang, Donghao Xie, Ming Pang, Chunyuan Yuan, Xue Jiang, Changping Peng, Zhangang Lin, Zheng Luo,
- Abstract要約: 電子商取引検索における関連モデリングはセマンティック・ギャップによって依然として課題が残されている。
3つのイノベーションを相乗化する自己維持型フレームワークであるADOREを提案する。
このフレームワークは、産業アプリケーションにおけるリソース効率、認知的に整合した関連モデリングのための新しいパラダイムを確立する。
- 参考スコア(独自算出の注目度): 15.317195529037319
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relevance modeling in e-commerce search remains challenged by semantic gaps in term-matching methods (e.g., BM25) and neural models' reliance on the scarcity of domain-specific hard samples. We propose ADORE, a self-sustaining framework that synergizes three innovations: (1) A Rule-aware Relevance Discrimination module, where a Chain-of-Thought LLM generates intent-aligned training data, refined via Kahneman-Tversky Optimization (KTO) to align with user behavior; (2) An Error-type-aware Data Synthesis module that auto-generates adversarial examples to harden robustness; and (3) A Key-attribute-enhanced Knowledge Distillation module that injects domain-specific attribute hierarchies into a deployable student model. ADORE automates annotation, adversarial generation, and distillation, overcoming data scarcity while enhancing reasoning. Large-scale experiments and online A/B testing verify the effectiveness of ADORE. The framework establishes a new paradigm for resource-efficient, cognitively aligned relevance modeling in industrial applications.
- Abstract(参考訳): 電子商取引検索における関連性モデリングは、項マッチング手法(例えばBM25)のセマンティックギャップと、ドメイン固有のハードサンプルの不足に依存するニューラルモデルによって依然として課題が残されている。
ADORE は,(1) ルール認識関連度識別モジュール,(1) ルール認識LLM が意図的整合トレーニングデータを生成する,という3つの革新を共用する自己維持型フレームワークを提案する。
ADOREはアノテーション、逆生成、蒸留を自動化し、推論を強化しながらデータの不足を克服する。
大規模な実験とオンラインA/Bテストは、ADOREの有効性を検証する。
このフレームワークは、産業アプリケーションにおけるリソース効率、認知的に整合した関連モデリングのための新しいパラダイムを確立する。
関連論文リスト
- From Reasoning LLMs to BERT: A Two-Stage Distillation Framework for Search Relevance [20.096802351171377]
eコマース検索システムは,大規模言語モデルの直接適用を防止するために,厳格なレイテンシ要件に直面している。
本稿では,LLM から軽量で展開しやすい学生モデルへ推論機能を移行するための2段階推論蒸留フレームワークを提案する。
我々のフレームワークは、複数のメトリクスをまたいだ大幅な改善を実現し、その有効性と実用的価値を検証します。
論文 参考訳(メタデータ) (2025-10-13T06:46:43Z) - UniErase: Towards Balanced and Precise Unlearning in Language Models [69.04923022755547]
大規模言語モデル(LLM)は、古い情報問題に対処するために反復的な更新を必要とする。
UniEraseは、知識の未学習と能力保持の間の精度とバランスの取れたパフォーマンスを示す、新しいアンラーニングフレームワークである。
論文 参考訳(メタデータ) (2025-05-21T15:53:28Z) - Self-Labeling in Multivariate Causality and Quantification for Adaptive Machine Learning [0.0]
ドメイン適応のための因果関係データストリームを自律的に関連付けるための対話型因果関係に基づく自己ラベル手法を提案した。
本稿では,これらの研究課題に対処する自己ラベルフレームワークとその理論的基盤をさらに発展させる。
論文 参考訳(メタデータ) (2024-04-08T18:16:22Z) - ProgGen: Generating Named Entity Recognition Datasets Step-by-step with Self-Reflexive Large Language Models [25.68491572293656]
大規模言語モデルは、名前付きエンティティ認識のような構造化された知識抽出タスクにおいて不足する。
本稿では,より優れたNERデータセットを生成するため,LCMを質素なNER能力で活用するための革新的で費用効率のよい戦略について検討する。
論文 参考訳(メタデータ) (2024-03-17T06:12:43Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNは、クエリ許可を通じてターゲットモデルを複製するための悪行であるモデル盗難攻撃に対して脆弱である。
異なるシナリオに対応するために,3つのモデルステルス攻撃を導入する。
論文 参考訳(メタデータ) (2023-12-18T05:42:31Z) - Model-Based Imitation Learning Using Entropy Regularization of Model and
Policy [0.456877715768796]
本稿では,エントロピー規則化マルコフ決定プロセスの下で,モデルに基づくエントロピー規則化模倣学習(MB-ERIL)を提案する。
ポリシー判別器は、ロボットが生成する動作と専門家の動作とを識別し、モデル判別器は、モデルが生成する反事実状態遷移と実際の動作とを識別する。
計算機シミュレーションと実ロボット実験により,MB-ERILの競争性能が向上し,ベースライン法と比較して試料効率が著しく向上することが示された。
論文 参考訳(メタデータ) (2022-06-21T04:15:12Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
インテント分類は、音声言語理解(SLU)における主要な課題である
近年の研究では、余分なデータやラベルを使用することで、OOD検出性能が向上することが示されている。
本稿では、IND意図分類とOOD検出の両方をサポートしながら、INDデータのみを用いてモデルを訓練することを提案する。
論文 参考訳(メタデータ) (2021-06-28T08:27:38Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。