論文の概要: Neighborhood density estimation using space-partitioning based hashing schemes
- arxiv url: http://arxiv.org/abs/2512.03187v1
- Date: Tue, 02 Dec 2025 19:37:18 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-12-04 12:05:24.174731
- Title: Neighborhood density estimation using space-partitioning based hashing schemes
- Title(参考訳): 空間分割型ハッシュ方式による近隣密度推定
- Authors: Aashi Jindal,
- Abstract要約: この研究は、大規模な単一細胞RNAシークエンシングデータにおいて、まれな細胞サブ集団を迅速に同定する、異常検出のための新しいスケッチベースアルゴリズムであるFiRE/FiRE.1を紹介する。
この論文は、プロジェクションハッシュを使ってストリーミングデータのコンセプトドリフトを検出し、様々なドリフトタイプで高い競争力と精度を示す、高速でリソース効率のよいアンサンブル学習機であるEnhashを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This work introduces FiRE/FiRE.1, a novel sketching-based algorithm for anomaly detection to quickly identify rare cell sub-populations in large-scale single-cell RNA sequencing data. This method demonstrated superior performance against state-of-the-art techniques. Furthermore, the thesis proposes Enhash, a fast and resource-efficient ensemble learner that uses projection hashing to detect concept drift in streaming data, proving highly competitive in time and accuracy across various drift types.
- Abstract(参考訳): この研究は、大規模な単一細胞RNAシークエンシングデータにおいて、まれな細胞サブ集団を迅速に同定する、異常検出のための新しいスケッチベースアルゴリズムであるFiRE/FiRE.1を紹介する。
この手法は最先端技術に対して優れた性能を示した。
さらに、この論文では、プロジェクションハッシュを用いてストリーミングデータのコンセプトドリフトを検出し、様々なドリフトタイプで高い競争力と精度を示す、高速でリソース効率のよいアンサンブル学習機であるEnhashを提案する。
関連論文リスト
- Scalable, Explainable and Provably Robust Anomaly Detection with One-Step Flow Matching [14.503330877000758]
Time-Conditioned Contraction Matching is a novel method for semi-supervised anomaly detection in tabular data。
これは、確率分布間の速度場を学習する最近の生成モデリングフレームワークであるフローマッチングにインスパイアされている。
ADBenchベンチマークの大規模な実験により、TCCMは検出精度と推論コストのバランスが良好であることが示されている。
論文 参考訳(メタデータ) (2025-10-21T06:26:38Z) - Probing Deep into Temporal Profile Makes the Infrared Small Target Detector Much Better [63.567886330598945]
赤外線小目標(IRST)検出は、精度、普遍性、堅牢性、効率的な性能を同時に達成する上で困難である。
現在の学習に基づく手法は、空間的領域と短期的領域の両方から"より多くの情報を活用する。
本稿では、IRST検出のための時間次元でのみ計算を行う効率的な深部プローブネットワーク(DeepPro)を提案する。
論文 参考訳(メタデータ) (2025-06-15T08:19:32Z) - Fuzzy Granule Density-Based Outlier Detection with Multi-Scale Granular Balls [65.44462297594308]
外乱検出は、正常なデータの分布から大きく逸脱する異常なサンプルの同定を指す。
ほとんどの教師なしの外れ値検出方法は、指定された外れ値を検出するために慎重に設計されている。
ファジィ粗集合に基づくマルチスケールアウトレイラ検出手法を提案し,様々な種類のアウトレイラを同定する。
論文 参考訳(メタデータ) (2025-01-06T12:35:51Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
本稿では,分散動的安全スクリーニング(DDSS)手法を提案し,共有メモリアーキテクチャと分散メモリアーキテクチャにそれぞれ適用する。
提案手法は, 線形収束率を低次複雑度で達成し, 有限個の繰り返しにおいてほとんどすべての不活性な特徴をほぼ確実に除去できることを示す。
論文 参考訳(メタデータ) (2022-04-23T02:45:55Z) - Density Ratio Estimation via Infinitesimal Classification [85.08255198145304]
そこで我々は, DRE-inftyを提案する。 DRE-inftyは, 密度比推定(DRE)を, より簡単なサブプロブレムに還元する手法である。
モンテカルロ法にインスパイアされ、中間ブリッジ分布の無限連続体を介して2つの分布の間を滑らかに補間する。
提案手法は,複雑な高次元データセット上での相互情報推定やエネルギーベースモデリングなどの下流タスクにおいて良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-22T06:26:29Z) - An Efficient Anomaly Detection Approach using Cube Sampling with
Streaming Data [2.0515785954568626]
異常検出は侵入検知、健康モニタリング、故障診断、センサネットワークイベント検出など様々な分野で重要である。
孤立林(アイフォレスト)アプローチは、異常を検出するためのよく知られた手法である。
本稿では,ストリーミングデータに有効なキューブサンプリングを用いた,効率的なiForestに基づく異常検出手法を提案する。
論文 参考訳(メタデータ) (2021-10-05T04:23:00Z) - Deep Unsupervised Hashing by Distilled Smooth Guidance [13.101031440853843]
DSG (Distilled Smooth Guidance) という,新しい深部教師なしハッシュ法を提案する。
具体的には,局所構造から得られた雑音的類似性信号に基づいて,類似度信頼度を求める。
広く使用されている3つのベンチマークデータセットに関する広範な実験は、提案されたDSGが常に最先端の検索方法を上回ることを示しています。
論文 参考訳(メタデータ) (2021-05-13T07:59:57Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Frequency Estimation in Data Streams: Learning the Optimal Hashing
Scheme [3.7565501074323224]
本稿では,最適化と機械学習に基づくデータストリームの周波数推定問題に対する新しいアプローチを提案する。
提案手法は、観測されたストリームプレフィックスをほぼ最適にハッシュ要素に利用し、ターゲット周波数分布を圧縮する。
提案手法は, 推定誤差の平均(要素単位)と推定誤差の平均(要素単位)で1~2桁, 予測誤差で45~90%の精度で既存手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-07-17T22:15:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。