論文の概要: FASTer: Toward Efficient Autoregressive Vision Language Action Modeling via Neural Action Tokenization
- arxiv url: http://arxiv.org/abs/2512.04952v2
- Date: Mon, 08 Dec 2025 10:02:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 15:54:52.373548
- Title: FASTer: Toward Efficient Autoregressive Vision Language Action Modeling via Neural Action Tokenization
- Title(参考訳): FASTer:ニューラルアクショントークン化による効率的な自己回帰視覚言語行動モデリングを目指して
- Authors: Yicheng Liu, Shiduo Zhang, Zibin Dong, Baijun Ye, Tianyuan Yuan, Xiaopeng Yu, Linqi Yin, Chenhao Lu, Junhao Shi, Luca Jiang-Tao Yu, Liangtao Zheng, Tao Jiang, Jingjing Gong, Xipeng Qiu, Hang Zhao,
- Abstract要約: 本稿では,効率的で汎用的なロボット学習のための統合フレームワークであるFASTerを紹介する。
FASTerVQは、アクションチャンクをシングルチャネルイメージとしてエンコードし、高い圧縮比を維持しながら、グローバルな時間的依存関係をキャプチャする。
FASTerVLAはブロックワイドの自動回帰デコーディングと軽量アクションエキスパートを備えたトークンライザ上に構築されており、推論の高速化とタスクパフォーマンスの向上を実現している。
- 参考スコア(独自算出の注目度): 61.10456021136654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autoregressive vision-language-action (VLA) models have recently demonstrated strong capabilities in robotic manipulation. However, their core process of action tokenization often involves a trade-off between reconstruction fidelity and inference efficiency. We introduce FASTer, a unified framework for efficient and generalizable robot learning that integrates a learnable tokenizer with an autoregressive policy built upon it. FASTerVQ encodes action chunks as single-channel images, capturing global spatio-temporal dependencies while maintaining a high compression ratio. FASTerVLA builds on this tokenizer with block-wise autoregressive decoding and a lightweight action expert, achieving both faster inference and higher task performance. Extensive experiments across simulated and real-world benchmarks show that FASTerVQ delivers superior reconstruction quality, high token utilization, and strong cross-task and cross-embodiment generalization, while FASTerVLA further improves overall capability, surpassing previous state-of-the-art VLA models in both inference speed and task performance.
- Abstract(参考訳): VLA(Autoregressive Vision-Language-action)モデルは最近、ロボット操作の強力な能力を実証している。
しかし、それらのアクショントークン化のコアプロセスは、しばしば再構成の忠実度と推論効率のトレードオフを伴う。
FASTerは、学習可能なトークン化ツールとそれに基づく自己回帰ポリシーを統合する、効率的で一般化可能なロボット学習のための統合フレームワークである。
FASTerVQは、アクションチャンクをシングルチャネルイメージとしてエンコードし、高い圧縮比を維持しながら、グローバルな時空間依存性をキャプチャする。
FASTerVLAはブロックワイドの自動回帰デコーディングと軽量アクションエキスパートを備えたトークンライザ上に構築されており、推論の高速化とタスクパフォーマンスの向上を実現している。
シミュレーションおよび実世界のベンチマークによる大規模な実験により、FASTerVQはより優れた再構成品質、高いトークン利用、強力なクロスタスクとクロスボディの一般化を提供する一方、FASTerVLAは、推論速度とタスクパフォーマンスの両方において従来の最先端のVLAモデルを上回る、全体的な能力を向上させることが示されている。
関連論文リスト
- OmniSAT: Compact Action Token, Faster Auto Regression [70.70037017501357]
我々は、コンパクトで転送可能なアクション表現を学ぶOmni Swift Action Tokenizerを紹介する。
その結果、離散トークン化はトレーニングシーケンスを6.8$times$に短縮し、ターゲットエントロピーを低下させる。
論文 参考訳(メタデータ) (2025-10-08T03:55:24Z) - dVLA: Diffusion Vision-Language-Action Model with Multimodal Chain-of-Thought [66.78110237549087]
VLA(Vision-Language-Action)モデルは、ロボット工学の次世代パラダイムとして登場しつつある。
単一システムにおける視覚認識,言語推論,ロボット制御を統一する拡散型VLAであるdVLAを紹介する。
論文 参考訳(メタデータ) (2025-09-30T02:36:11Z) - SQAP-VLA: A Synergistic Quantization-Aware Pruning Framework for High-Performance Vision-Language-Action Models [26.400918307368485]
SQAP-VLAは、構造化された、トレーニング不要なVLA推論アクセラレーションフレームワークである。
最先端の量子化とトークンのプルーニングを同時に実現する。
標準的なVLAモデルに適用すると、SQAP-VLAは計算効率と推論速度において大きな向上をもたらす。
論文 参考訳(メタデータ) (2025-09-11T01:52:25Z) - CronusVLA: Towards Efficient and Robust Manipulation via Multi-Frame Vision-Language-Action Modeling [84.51372201195132]
CronusVLAは、単一フレームのVLAモデルをマルチフレームパラダイムに拡張する統合フレームワークである。
CronusVLAは70.9%の成功率で先進的な性能と優れた堅牢性を達成する。
これらの結果は、より強力で堅牢な実世界展開のためのVLAモデルにおける効率的なマルチフレーム適応の可能性を強調している。
論文 参考訳(メタデータ) (2025-06-24T17:30:27Z) - SP-VLA: A Joint Model Scheduling and Token Pruning Approach for VLA Model Acceleration [70.72227437717467]
VLA(Vision-Language-Action)モデルは、その強力な制御能力に注目が集まっている。
計算コストが高く、実行頻度も低いため、ロボット操作や自律ナビゲーションといったリアルタイムタスクには適さない。
本稿では,共同スケジューリングモデルとプルーニングトークンにより,VLAモデルを高速化する統一フレームワークSP-VLAを提案する。
論文 参考訳(メタデータ) (2025-06-15T05:04:17Z) - Think Twice, Act Once: Token-Aware Compression and Action Reuse for Efficient Inference in Vision-Language-Action Models [30.7855782696894]
VLA(Vision-Language-Action)モデルは、自然言語による汎用ロボット制御の強力なパラダイムとして登場した。
VLAモデルにおけるアクション再利用を可能にする最初のトレーニングフリーかつプラグアンドプレイアクセラレーションフレームワークであるFlashVLAを提案する。
論文 参考訳(メタデータ) (2025-05-27T13:47:18Z) - Accelerating Vision-Language-Action Model Integrated with Action Chunking via Parallel Decoding [24.1236728596359]
VLA(Vision-Language-Action)モデルでは、一般化可能なロボット操作の可能性を示している。
本稿では,アクションチャンキングと統合されたVLAモデルのための最初の並列デコーディングフレームワークであるPD-VLAを提案する。
本フレームワークは,並列な固定点反復によって解く非線形システムとして自己回帰復号を再構成する。
論文 参考訳(メタデータ) (2025-03-04T06:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。