論文の概要: Formalisation of Security for Federated Learning with DP and Attacker Advantage in IIIf for Satellite Swarms -- Extended Version
- arxiv url: http://arxiv.org/abs/2512.06467v1
- Date: Sat, 06 Dec 2025 15:09:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.372136
- Title: Formalisation of Security for Federated Learning with DP and Attacker Advantage in IIIf for Satellite Swarms -- Extended Version
- Title(参考訳): 衛星群におけるDPとアタッカーアドバンテージによるフェデレートラーニングのためのセキュリティの形式化 -拡張バージョン-
- Authors: Florian Kammüller,
- Abstract要約: 衛星群のような分散アプリケーションでは、フェデレートラーニング(FL)を用いることで、小さなデバイスでも機械学習を効率的に適用することができる。
FLは自然に差分プライバシをサポートするが、新しい攻撃であるData Leakage from Gradient (DLG)が最近発見された。
我々は、分散力学系における微分プライバシーの形式的概念に関する既存の研究を拡張し、攻撃的優位性の概念と関連づける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In distributed applications, like swarms of satellites, machine learning can be efficiently applied even on small devices by using Federated Learning (FL). This allows to reduce the learning complexity by transmitting only updates to the general model in the server in the form of differences in stochastic gradient descent. FL naturally supports differential privacy but new attacks, so called Data Leakage from Gradient (DLG) have been discovered recently. There has been work on defenses against DLG but there is a lack of foundation and rigorous evaluation of their security. In the current work, we extend existing work on a formal notion of Differential Privacy for Federated Learning distributed dynamic systems and relate it to the notion of the attacker advantage. This formalisation is carried out within the Isabelle Insider and Infrastructure framework (IIIf) allowing the machine supported verification of theory and applications within the proof assistant Isabelle. Satellite swarm systems are used as a motivating use case but also as a validation case study.
- Abstract(参考訳): 衛星群のような分散アプリケーションでは、フェデレートラーニング(FL)を用いることで、小さなデバイスでも機械学習を効率的に適用することができる。
これにより、確率勾配勾配の差分という形で、サーバ内の一般的なモデルにのみ更新を送信することで、学習の複雑さを低減することができる。
FLは自然に差分プライバシをサポートするが、新しい攻撃であるData Leakage from Gradient (DLG)が最近発見された。
DLGに対する防衛作業は行われているが、そのセキュリティに対する基盤と厳格な評価が欠如している。
本研究は,分散動的システムに対する微分プライバシーの形式的概念に関する既存の研究を拡張し,攻撃的優位性の概念と関連づけるものである。
この形式化はIsabelle Insider and Infrastructure framework (IIIf)内で行われ、機械が証明アシスタントIsabelle内で理論と応用を検証できるようにする。
衛星群システムは、モチベーションユースケースとしてだけでなく、検証ケーススタディとしても利用されている。
関連論文リスト
- SPEAR++: Scaling Gradient Inversion via Sparsely-Used Dictionary Learning [48.41770886055744]
Federated Learningは最近、現実世界のシナリオへのデプロイが増えている。
いわゆる勾配反転攻撃の導入は、プライバシー保護特性に挑戦している。
本稿では,ReLU活性化を伴う線形層の勾配の理論的解析に基づくSPEARを紹介する。
新たな攻撃であるSPEAR++は、DPノイズに対する堅牢性やFedAvgアグリゲーションなど、SPEARの望ましい特性をすべて保持しています。
論文 参考訳(メタデータ) (2025-10-28T09:06:19Z) - Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
マルチモーダル大規模言語モデル(MLLM)のセキュリティを高めるために,Secure Tug-of-War(SecTOW)を提案する。
SecTOWは2つのモジュールで構成される:ディフェンダーと補助攻撃者。どちらも強化学習(GRPO)を使用して反復的に訓練される。
SecTOWは、一般的な性能を維持しながら、セキュリティを大幅に改善することを示す。
論文 参考訳(メタデータ) (2025-07-29T17:39:48Z) - Secure Distributed Learning for CAVs: Defending Against Gradient Leakage with Leveled Homomorphic Encryption [0.0]
ホモモルフィック暗号化(HE)は、差分プライバシー(DP)とセキュアマルチパーティ計算(SMPC)に代わる有望な代替手段を提供する
資源制約のある環境において,フェデレートラーニング(FL)に最も適したHE方式の評価を行った。
我々は、モデル精度を維持しながら、Gradients (DLG)攻撃からのDeep Leakageを効果的に軽減するHEベースのFLパイプラインを開発した。
論文 参考訳(メタデータ) (2025-06-09T16:12:18Z) - GI-NAS: Boosting Gradient Inversion Attacks Through Adaptive Neural Architecture Search [52.27057178618773]
グラディエント・インバージョン・アタック (Gradient Inversion Attacks) は、Federated Learning (FL) システムの伝達勾配を反転させ、ローカルクライアントの機密データを再構築する。
勾配反転法の大半は明示的な事前知識に大きく依存しており、現実的なシナリオでは利用できないことが多い。
本稿では,ニューラルネットワークを適応的に探索し,ニューラルネットワークの背後にある暗黙の先行情報をキャプチャするニューラルアーキテクチャ探索(GI-NAS)を提案する。
論文 参考訳(メタデータ) (2024-05-31T09:29:43Z) - SaFL: Sybil-aware Federated Learning with Application to Face Recognition [12.969417519807322]
Federated Learning(FL)は、顧客間で共同学習を行う機械学習パラダイムである。
マイナス面として、FLは研究を開始したばかりのセキュリティとプライバシに関する懸念を提起している。
本稿では,SAFL と呼ばれる FL の毒殺攻撃に対する新しい防御法を提案する。
論文 参考訳(メタデータ) (2023-11-07T21:06:06Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z) - Shielding Federated Learning Systems against Inference Attacks with ARM
TrustZone [0.0]
フェデレートラーニング(FL)は、マシンラーニングモデルをトレーニングする上で、個人データをユーザ環境に保持する新たな視点を開放する。
近年、個人データを勾配から流出させる推論攻撃の長いリストは、効果的な保護メカニズムの考案の必要性を強調している。
GradSecは、機械学習モデルのTEEのみに敏感なレイヤを保護できるソリューションです。
論文 参考訳(メタデータ) (2022-08-11T15:53:07Z) - RelaxLoss: Defending Membership Inference Attacks without Losing Utility [68.48117818874155]
より達成可能な学習目標を持つ緩和された損失に基づく新しい学習フレームワークを提案する。
RelaxLossは、簡単な実装と無視可能なオーバーヘッドのメリットを加えた任意の分類モデルに適用できる。
当社のアプローチはMIAに対するレジリエンスの観点から,常に最先端の防御機構より優れています。
論文 参考訳(メタデータ) (2022-07-12T19:34:47Z) - Deep Leakage from Model in Federated Learning [6.001369927772649]
モデル重みの伝達がクライアントのプライベートなローカルデータをリークする可能性を示す2つの新しいフレームワークを提案する。
また,提案攻撃に対する防御策を2つ導入し,その防御効果を評価した。
論文 参考訳(メタデータ) (2022-06-10T05:56:00Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。