論文の概要: Novel Deep Learning Architectures for Classification and Segmentation of Brain Tumors from MRI Images
- arxiv url: http://arxiv.org/abs/2512.06531v1
- Date: Sat, 06 Dec 2025 18:49:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.399384
- Title: Novel Deep Learning Architectures for Classification and Segmentation of Brain Tumors from MRI Images
- Title(参考訳): MRI画像からの脳腫瘍の分類と分類のための新しいディープラーニングアーキテクチャ
- Authors: Sayan Das, Arghadip Biswas,
- Abstract要約: 脳腫瘍は人間の生命に重大な脅威を与えるため、早期に正確に検出する必要がある。
近年、小児や思春期の脳腫瘍の発生が増加し、膨大な量のデータが得られた。
我々は,脳腫瘍の分類のための2つの新しいディープラーニングアーキテクチャー (a) SAETCN (Self-Attention Enhancement tumor Classification Network) を提案した。
- 参考スコア(独自算出の注目度): 0.8846824366848378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain tumors pose a significant threat to human life, therefore it is very much necessary to detect them accurately in the early stages for better diagnosis and treatment. Brain tumors can be detected by the radiologist manually from the MRI scan images of the patients. However, the incidence of brain tumors has risen amongst children and adolescents in recent years, resulting in a substantial volume of data, as a result, it is time-consuming and difficult to detect manually. With the emergence of Artificial intelligence in the modern world and its vast application in the medical field, we can make an approach to the CAD (Computer Aided Diagnosis) system for the early detection of Brain tumors automatically. All the existing models for this task are not completely generalized and perform poorly on the validation data. So, we have proposed two novel Deep Learning Architectures - (a) SAETCN (Self-Attention Enhancement Tumor Classification Network) for the classification of different kinds of brain tumors. We have achieved an accuracy of 99.38% on the validation dataset making it one of the few Novel Deep learning-based architecture that is capable of detecting brain tumors accurately. We have trained the model on the dataset, which contains images of 3 types of tumors (glioma, meningioma, and pituitary tumors) and non-tumor cases. and (b) SAS-Net (Self-Attentive Segmentation Network) for the accurate segmentation of brain tumors. We have achieved an overall pixel accuracy of 99.23%.
- Abstract(参考訳): 脳腫瘍は人間の生命に重大な脅威をもたらすため、診断と治療のために早期に正確に検出する必要がある。
脳腫瘍は、患者のMRIスキャン画像から放射線医によって手動で検出できる。
しかし、近年では小児や青年期の脳腫瘍の発生が増加し、膨大な量のデータが得られたため、手動で検出するのは時間がかかり困難である。
現代社会における人工知能の出現と医療分野における膨大な応用により,脳腫瘍の早期発見のためのCAD(Computer Aided Diagnosis)システムへのアプローチが可能となった。
このタスクの既存のモデルはすべて完全に一般化されておらず、バリデーションデータでは不十分である。
そこで我々は2つの新しいディープラーニングアーキテクチャを提案しました。
(a)異なる種類の脳腫瘍の分類のためのSAETCN(Self-Attention Enhancement tumor Classification Network)。
我々は検証データセットの99.38%の精度を達成し、脳腫瘍を正確に検出できる数少ない新しいディープラーニングベースのアーキテクチャの1つである。
腫瘍は3種類の腫瘍(グリオーマ,髄膜腫,下垂体腫瘍)と非腫瘍の3種類を含む。
そして
b) SAS-Net (Self-Attentive Segmentation Network) は脳腫瘍の正確なセグメンテーションのためのネットワークである。
全体的なピクセル精度は99.23%に達した。
関連論文リスト
- Scaling Artificial Intelligence for Multi-Tumor Early Detection with More Reports, Fewer Masks [59.37427210144734]
医療報告における記述に一致する腫瘍をセグメント化するためにAIを訓練するR-Superを紹介する。
101,654のレポートでトレーニングされたAIモデルは、723のマスクでトレーニングされたモデルに匹敵するパフォーマンスを達成した。
R-Superは脾・胆嚢・前立腺・膀胱・子宮・食道の腫瘍の分画を可能にした。
論文 参考訳(メタデータ) (2025-10-16T15:35:44Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
脳腫瘍は、個人の寿命を減少させる深刻な健康上の合併症の1つである。
脳腫瘍のタイムリーな検出と予測は、脳腫瘍による死亡率の予防に役立つ。
ディープラーニングベースのアプローチは、自動化バイオメディカル画像探索ツールを開発するための有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-16T14:06:45Z) - An Optimized Ensemble Deep Learning Model For Brain Tumor Classification [3.072340427031969]
脳腫瘍の不正確な同定は、寿命を著しく低下させる。
本研究は,脳腫瘍を効率よく分類するための伝達学習(TL)を用いた,革新的な最適化に基づく深層アンサンブル手法を提案する。
Xception, ResNet50V2, ResNet152V2, InceptionResNetV2, GAWO, GSWOはそれぞれ99.42%, 98.37%, 98.22%, 98.26%, 99.71%, 99.76%に達した。
論文 参考訳(メタデータ) (2023-05-22T09:08:59Z) - Brain Tumor Segmentation from MRI Images using Deep Learning Techniques [3.1498833540989413]
パブリックMRIデータセットは、脳腫瘍、髄膜腫、グリオーマ、下垂体腫瘍の3つの変種を持つ233人の患者の3064 TI強調画像を含む。
データセットファイルは、よく知られた画像セグメンテーション深層学習モデルの実装とトレーニングを利用する方法論に順応する前に、変換され、前処理される。
実験の結果,Adamを用いた再帰的残差U-Netは平均差0.8665に到達し,他の最先端ディープラーニングモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-04-29T13:33:21Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Detection and Classification of Brain tumors Using Deep Convolutional
Neural Networks [0.0]
脳の腫瘍はがんなので致命的です。
脳腫瘍の大きさや位置が異なるため、その性質を理解することは困難である。
本論文は,通常の画素と異常画素を区別し,精度良く分類することを目的とする。
論文 参考訳(メタデータ) (2022-08-28T18:24:22Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - Brain Tumor Classification Using Medial Residual Encoder Layers [9.038707616951795]
がんは世界で2番目に多い死因であり、2018年だけで950万人以上が死亡している。
脳腫瘍は4件のがん死亡のうち1件を数えている。
本稿では,エンコーダブロックを含むディープラーニングに基づくシステムを提案する。
3064 MR画像からなるデータセット上でのこのモデルの実験的評価は、95.98%の精度を示しており、このデータベースに関する以前の研究より優れている。
論文 参考訳(メタデータ) (2020-11-01T21:19:38Z) - Modality-Pairing Learning for Brain Tumor Segmentation [34.58078431696929]
そこで我々は,脳腫瘍セグメンテーションのための新しいエンド・ツー・エンドモダリティペアリング学習法を提案する。
提案手法はBraTS 2020オンラインテストデータセット上でテストされ,有望なセグメンテーション性能が得られた。
論文 参考訳(メタデータ) (2020-10-19T07:42:10Z) - Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network [34.81845999071626]
本稿では,脳腫瘍の異常検出アルゴリズムを提案する。
健常な(正常な)脳画像のみを訓練する半教師付き異常検出モデルが提案されている。
論文 参考訳(メタデータ) (2020-07-09T12:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。