論文の概要: TRACE: A Generalizable Drift Detector for Streaming Data-Driven Optimization
- arxiv url: http://arxiv.org/abs/2512.07082v1
- Date: Mon, 08 Dec 2025 01:33:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.672583
- Title: TRACE: A Generalizable Drift Detector for Streaming Data-Driven Optimization
- Title(参考訳): TRACE: データ駆動最適化をストリーミングする汎用ドリフト検出器
- Authors: Yuan-Ting Zhong, Ting Huang, Xiaolin Xiao, Yue-Jiao Gong,
- Abstract要約: 多くの最適化タスクには、未知の概念ドリフトによるストリーミングデータが含まれており、Streaming Data-Driven Optimization (SDDO)として大きな課題となっている。
本稿では,Transferable Concept-drift Estimatorを提案する。Transferable Concept-drift Estimatorは,時間スケールの異なるストリーミングデータの分布変化を効果的に検出する。
多様なベンチマークに関する総合的な実験結果は、SDDOシナリオにおける我々のアプローチの優れた一般化、堅牢性、有効性を示している。
- 参考スコア(独自算出の注目度): 18.46974867492826
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many optimization tasks involve streaming data with unknown concept drifts, posing a significant challenge as Streaming Data-Driven Optimization (SDDO). Existing methods, while leveraging surrogate model approximation and historical knowledge transfer, are often under restrictive assumptions such as fixed drift intervals and fully environmental observability, limiting their adaptability to diverse dynamic environments. We propose TRACE, a TRAnsferable C}oncept-drift Estimator that effectively detects distributional changes in streaming data with varying time scales. TRACE leverages a principled tokenization strategy to extract statistical features from data streams and models drift patterns using attention-based sequence learning, enabling accurate detection on unseen datasets and highlighting the transferability of learned drift patterns. Further, we showcase TRACE's plug-and-play nature by integrating it into a streaming optimizer, facilitating adaptive optimization under unknown drifts. Comprehensive experimental results on diverse benchmarks demonstrate the superior generalization, robustness, and effectiveness of our approach in SDDO scenarios.
- Abstract(参考訳): 多くの最適化タスクには、未知の概念ドリフトによるストリーミングデータが含まれており、Streaming Data-Driven Optimization (SDDO)として大きな課題となっている。
既存の手法は、サロゲートモデル近似と履歴知識伝達を利用するが、しばしば固定されたドリフト間隔や完全な環境観測可能性といった制限的な仮定の下で、様々な動的環境への適応性を制限している。
本稿では,Transferable C}oncept-drift Estimatorを提案する。
TRACEは、原則化されたトークン化戦略を利用して、注意に基づくシーケンス学習を使用して、データストリームやモデルドリフトパターンから統計的特徴を抽出し、未知のデータセットを正確に検出し、学習したドリフトパターンの転送可能性を強調する。
さらに,ストリームオプティマイザに統合し,未知のドリフト下での適応最適化を容易にすることで,TRACEのプラグ・アンド・プレイ特性を示す。
多様なベンチマークに関する総合的な実験結果は、SDDOシナリオにおける我々のアプローチの優れた一般化、堅牢性、有効性を示している。
関連論文リスト
- Optimizing Multi-Modal Trackers via Sensitivity-aware Regularized Tuning [112.12667472919723]
本稿では,RGBデータに対する事前学習モデルを効果的に適用することにより,マルチモーダルトラッカーの最適化に挑戦する。
既存の微調整パラダイムは過度な自由と過剰な制限の間に振動し、最適の可塑性-安定性のトレードオフをもたらす。
そこで本研究では,本質的なパラメータ感を取り入れて学習プロセスを微妙に洗練する,感性に配慮した規則化チューニングフレームワークを提案する。
論文 参考訳(メタデータ) (2025-08-24T18:42:47Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC)は,限られたラベル付きサンプルを用いたリモートセンシング画像の分類の課題を示す。
理想的なプラトン表現空間を構築することを目的とした,OTAT(Optimal Transport Adapter Tuning)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-19T07:04:24Z) - Direct Preference Optimization-Enhanced Multi-Guided Diffusion Model for Traffic Scenario Generation [0.0]
拡散に基づくモデルは、現実的な交通シナリオを生成するために現実世界の運転データを使用することの有効性が認識されている。
これらのモデルは、特定のトラフィック嗜好を取り入れ、シナリオリアリズムを強化するためにガイド付きサンプリングを採用している。
本稿では,新しいトレーニング戦略を利用して,交通前兆に密着した多誘導拡散モデルを提案する。
論文 参考訳(メタデータ) (2025-02-14T05:29:43Z) - datadriftR: An R Package for Concept Drift Detection in Predictive Models [0.0]
本稿では,コンセプトドリフトを検出するためのRパッケージであるドリフト器を紹介する。
ドリフト検出とドリフトの背後にある原因の理解を深めることのできるプロファイルドリフト検出(PDD)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-12-15T20:59:49Z) - SUDS: A Strategy for Unsupervised Drift Sampling [0.5437605013181142]
監視された機械学習は、データ分散が時間とともに変化するコンセプトドリフトに遭遇し、パフォーマンスが低下する。
本稿では,既存のドリフト検出アルゴリズムを用いて,同種サンプルを選択する新しい手法であるドリフトサンプリング戦略(SUDS)を提案する。
本研究は, 動的環境におけるラベル付きデータ利用の最適化におけるSUDSの有効性を示すものである。
論文 参考訳(メタデータ) (2024-11-05T10:55:29Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Tracking Performance of Online Stochastic Learners [57.14673504239551]
オンラインアルゴリズムは、大規模なバッチにデータを保存したり処理したりすることなく、リアルタイムで更新を計算できるため、大規模な学習環境で人気がある。
一定のステップサイズを使用すると、これらのアルゴリズムはデータやモデル特性などの問題パラメータのドリフトに適応し、適切な精度で最適解を追跡する能力を持つ。
定常仮定に基づく定常状態性能とランダムウォークモデルによるオンライン学習者の追跡性能の関連性を確立する。
論文 参考訳(メタデータ) (2020-04-04T14:16:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。