論文の概要: datadriftR: An R Package for Concept Drift Detection in Predictive Models
- arxiv url: http://arxiv.org/abs/2412.11308v1
- Date: Sun, 15 Dec 2024 20:59:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 14:01:21.291888
- Title: datadriftR: An R Package for Concept Drift Detection in Predictive Models
- Title(参考訳): datadriftR:予測モデルにおける概念ドリフト検出のためのRパッケージ
- Authors: Ugur Dar, Mustafa Cavus,
- Abstract要約: 本稿では,コンセプトドリフトを検出するためのRパッケージであるドリフト器を紹介する。
ドリフト検出とドリフトの背後にある原因の理解を深めることのできるプロファイルドリフト検出(PDD)と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Predictive models often face performance degradation due to evolving data distributions, a phenomenon known as data drift. Among its forms, concept drift, where the relationship between explanatory variables and the response variable changes, is particularly challenging to detect and adapt to. Traditional drift detection methods often rely on metrics such as accuracy or variable distributions, which may fail to capture subtle but significant conceptual changes. This paper introduces drifter, an R package designed to detect concept drift, and proposes a novel method called Profile Drift Detection (PDD) that enables both drift detection and an enhanced understanding of the cause behind the drift by leveraging an explainable AI tool - Partial Dependence Profiles (PDPs). The PDD method, central to the package, quantifies changes in PDPs through novel metrics, ensuring sensitivity to shifts in the data stream without excessive computational costs. This approach aligns with MLOps practices, emphasizing model monitoring and adaptive retraining in dynamic environments. The experiments across synthetic and real-world datasets demonstrate that PDD outperforms existing methods by maintaining high accuracy while effectively balancing sensitivity and stability. The results highlight its capability to adaptively retrain models in dynamic environments, making it a robust tool for real-time applications. The paper concludes by discussing the advantages, limitations, and future extensions of the package for broader use cases.
- Abstract(参考訳): 予測モデルは、データドリフトと呼ばれる現象であるデータ分散の進化によって、しばしば性能劣化に直面します。
その形態の中で、説明変数と応答変数の関係が変化する概念ドリフトは、特に検出と適応が困難である。
伝統的なドリフト検出法は、しばしば精度や変数分布のようなメトリクスに依存しており、微妙だが重要な概念的変化を捉えることができない。
本稿では,概念ドリフトを検出するためのRパッケージであるドリフト器を紹介し,説明可能なAIツールであるPartial Dependence Profiles (PDPs)を活用することにより,ドリフト検出とドリフトの背後にある原因の理解を両立させることができるプロファイルドリフト検出(PDD)と呼ばれる新しい手法を提案する。
パッケージの中心となるPDD法は、新しいメトリクスを通じてPDPの変化を定量化し、過剰な計算コストを伴わずにデータストリームのシフトに対する感度を確保する。
このアプローチはMLOpsのプラクティスと一致し、モデル監視と動的環境における適応的再トレーニングを強調している。
合成および実世界のデータセットによる実験により、PDDは感度と安定性のバランスを効果的に保ちながら高い精度を維持し、既存の手法よりも優れていることが示された。
結果は、動的環境でモデルを適応的に再トレーニングする能力を強調しており、リアルタイムアプリケーションのための堅牢なツールである。
この論文は、幅広いユースケースに対するパッケージの利点、制限、将来の拡張について議論することで締めくくります。
関連論文リスト
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
シークエンシャルレコメンデーション(SR)は、ユーザーが過去の行動に基づいて興味を持つかもしれない項目を予測することを目的としている。
我々はSRを新しい情報理論の観点から再検討し、逐次モデリング手法がユーザの行動のランダム性と予測不可能性を適切に把握できないことを発見した。
ファジィ情報処理理論に触発された本論文では,制限を克服し,ユーザの関心事の進化をよりよく捉えるために,ファジィなインタラクションシーケンスの組を導入する。
論文 参考訳(メタデータ) (2024-10-31T14:52:01Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - Thwarting Cybersecurity Attacks with Explainable Concept Drift [10.517955982799553]
サイバーセキュリティ攻撃は、自律システムの運用に重大な脅威をもたらす。
本稿では, ドリフト特徴を特定するための特徴ドリフト記述(FDE)モジュールを提案する。
FDEは85.77 %のドリフト特性を同定し、DL適応法でその有用性を示す。
論文 参考訳(メタデータ) (2024-03-18T20:20:00Z) - EdgeFD: An Edge-Friendly Drift-Aware Fault Diagnosis System for
Industrial IoT [0.0]
我々は,産業用モノのインターネット(IIoT)における頻繁なデータドリフトによる課題を軽減するため,DAWC(Drift-Aware Weight Consolidation)を提案する。
DAWCは複数のデータドリフトシナリオを効率的に管理し、エッジデバイス上での一定のモデル微調整の必要性を最小限にする。
包括的診断・可視化プラットフォームも開発しました。
論文 参考訳(メタデータ) (2023-10-07T06:48:07Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
適応学習パラダイムの下で,textbfForgery-aware textbfAdaptive textbfVision textbfTransformer(FA-ViT)を提案する。
FA-ViTは、クロスデータセット評価において、Celeb-DFおよびDFDCデータセット上で93.83%と78.32%のAUCスコアを達成する。
論文 参考訳(メタデータ) (2023-09-20T06:51:11Z) - Uncovering Drift in Textual Data: An Unsupervised Method for Detecting
and Mitigating Drift in Machine Learning Models [9.035254826664273]
機械学習におけるドリフト(drift)とは、モデルが動作しているデータやコンテキストの統計的性質が時間とともに変化し、性能が低下する現象を指す。
提案手法では, 目標分布として生産データのサンプルを符号化し, モデルトレーニングデータを基準分布として符号化する。
また,ドリフトの根本原因である生産データのサブセットも同定する。
これらの高ドリフトサンプルを用いて再トレーニングしたモデルでは、オンライン顧客エクスペリエンスの品質指標のパフォーマンスが改善された。
論文 参考訳(メタデータ) (2023-09-07T16:45:42Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
リモートセンシング変化検出(RS-CD)は、マルチテンポラルリモートセンシング画像(MT-RSI)から関連する変化を検出することを目的とする。
既存のRS-CD法の性能は、大規模な注釈付きデータセットのトレーニングによるものである。
本稿では,これらの問題に対処可能なディープメトリック学習に基づく教師なしCD手法を提案する。
論文 参考訳(メタデータ) (2023-03-16T17:52:45Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - Learning Parameter Distributions to Detect Concept Drift in Data Streams [13.20231558027132]
実コンセプトドリフト検出のための新しいフレームワークであるERICSを提案する。
予測モデルのパラメータをランダム変数として扱うことにより、最適パラメータの分布の変化に対応する概念ドリフトが示される。
ERICSはまた、既存のアプローチよりも大きな利点である入力レベルで概念ドリフトを検出することができる。
論文 参考訳(メタデータ) (2020-10-19T11:19:16Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。