論文の概要: Affine Subspace Models and Clustering for Patch-Based Image Denoising
- arxiv url: http://arxiv.org/abs/2512.07259v1
- Date: Mon, 08 Dec 2025 07:53:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.769939
- Title: Affine Subspace Models and Clustering for Patch-Based Image Denoising
- Title(参考訳): Affine Subspace Models and Clustering for Patch-based Image Denoising
- Authors: Tharindu Wickremasinghe, Marco F. Duarte,
- Abstract要約: 本研究では,アフィン部分空間モデルを用いて画像タイルベクトル空間の幾何学的構造をよりよく一致させる。
最小二乗射影を用いたアフィン部分空間クラスタリングモデルに依存する単純な復調アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image tile-based approaches are popular in many image processing applications such as denoising (e.g., non-local means). A key step in their use is grouping the images into clusters, which usually proceeds iteratively splitting the images into clusters and fitting a model for the images in each cluster. Linear subspaces have emerged as a suitable model for tile clusters; however, they are not well matched to images patches given that images are non-negative and thus not distributed around the origin in the tile vector space. We study the use of affine subspace models for the clusters to better match the geometric structure of the image tile vector space. We also present a simple denoising algorithm that relies on the affine subspace clustering model using least squares projection. We review several algorithmic approaches to solve the affine subspace clustering problem and show experimental results that highlight the performance improvements in clustering and denoising.
- Abstract(参考訳): 画像タイルベースのアプローチは、デノイング(例えば非局所的な手段)のような多くの画像処理アプリケーションで人気がある。
彼らの利用における重要なステップは、イメージをクラスタにグループ化し、通常、イメージをクラスタに反復的に分割し、各クラスタ内のイメージのモデルに適合させる。
線形部分空間はタイルクラスタに適したモデルとして登場したが、画像が負でないためタイルベクトル空間の原点付近に分布しないため、画像パッチとはあまり一致しない。
本研究では,アフィン部分空間モデルを用いて画像タイルベクトル空間の幾何学的構造をよりよく一致させる。
また、最小二乗射影を用いたアフィン部分空間クラスタリングモデルに依存する単純な復調アルゴリズムを提案する。
本稿では,アフィン部分空間クラスタリング問題に対するアルゴリズム的アプローチを概説し,クラスタリングとデノナイジングの性能改善を目立たせる実験結果を示す。
関連論文リスト
- Scalable Context-Preserving Model-Aware Deep Clustering for Hyperspectral Images [51.95768218975529]
ハイパースペクトル画像(HSI)の教師なし解析にサブスペースクラスタリングが広く採用されている。
近年のモデル対応深層空間クラスタリング手法では、O(n2)の複雑性を持つ自己表現行列の計算とスペクトルクラスタリングを含む2段階のフレームワークを用いることが多い。
本稿では,HSIクラスタリングを効率的に行うために,局所構造と非局所構造を協調的にキャプチャする,ベース表現に基づく拡張性のあるコンテキスト保存深層クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2025-06-12T16:43:09Z) - Local Clustering for Lung Cancer Image Classification via Sparse Solution Technique [1.07793546088014]
重み付きグラフの頂点としてのイメージと,グラフのエッジとしてのイメージの対の類似性について検討する。
私たちのアプローチは、他の最先端のアプローチと比較して、はるかに効率的で、好ましくないか、等しく効果的です。
論文 参考訳(メタデータ) (2024-07-11T18:18:32Z) - Semantic-Enhanced Image Clustering [6.218389227248297]
本稿では,視覚言語事前学習モデルの助けを借りて,画像クラスタリングの課題について検討する。
イメージを適切なセマンティック空間にマップする方法と、イメージとセマンティック空間の両方からイメージをクラスタリングする方法は、2つの重要な問題である。
本稿では,与えられた画像を適切な意味空間にマッピングする手法を提案し,画像と意味論の関係に応じて擬似ラベルを生成する。
論文 参考訳(メタデータ) (2022-08-21T09:04:21Z) - On Mitigating Hard Clusters for Face Clustering [48.39472979642971]
顔クラスタリングは、大規模な未ラベルの顔画像を使用して顔認識システムをスケールアップするための有望な方法である。
我々はNDDe(Neighborhood-Diffusion-based Density)とTPDi(Transition-Probability-based Distance)の2つの新しいモジュールを紹介した。
複数のベンチマーク実験により,各モジュールが最終性能に寄与することが示された。
論文 参考訳(メタデータ) (2022-07-25T03:55:15Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
我々は異常クラスタリングを導入し、その目標はデータを異常型の一貫性のあるクラスタにまとめることである。
これは異常検出とは違い、その目標は異常を通常のデータから分割することである。
パッチベースの事前訓練されたディープ埋め込みとオフザシェルフクラスタリング手法を用いた,単純で効果的なクラスタリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-21T23:11:33Z) - Correlation Clustering Reconstruction in Semi-Adversarial Models [70.11015369368272]
相関クラスタリングは多くのアプリケーションにおいて重要なクラスタリング問題である。
本研究では,ランダムノイズや対向的な修正によって崩壊した潜伏クラスタリングを再構築しようとする,この問題の再構築版について検討する。
論文 参考訳(メタデータ) (2021-08-10T14:46:17Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
本稿では,共同表現学習とクラスタリングを組み合わせた画像クラスタリングのための新しいフレームワークを提案する。
提案手法は,様々な画像データセットにおける最先端の単一ステージクラスタリング手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-24T15:36:49Z) - Scattering Transform Based Image Clustering using Projection onto
Orthogonal Complement [2.0305676256390934]
本稿では,画像クラスタリングのための最先端,安定,高速なアルゴリズムであるProjected-Scattering Spectral Clustering (PSSC)を紹介する。
PSSCは、小さな画像の散乱変換の幾何学的構造を利用する新しい方法を含む。
実験の結果,PSSCは全ての浅層クラスタリングアルゴリズムの中で最良の結果が得られることがわかった。
論文 参考訳(メタデータ) (2020-11-23T17:59:03Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
局所グラフクラスタリングのためのネットワークLasso法の統計的および計算的性質について検討する。
nLassoによって提供されるクラスタは、クラスタ境界とシードノードの間のネットワークフローを通じて、エレガントに特徴付けられる。
論文 参考訳(メタデータ) (2020-04-25T17:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。