論文の概要: Exact Synthetic Populations for Scalable Societal and Market Modeling
- arxiv url: http://arxiv.org/abs/2512.07306v1
- Date: Mon, 08 Dec 2025 08:48:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-09 22:03:54.792428
- Title: Exact Synthetic Populations for Scalable Societal and Market Modeling
- Title(参考訳): スケーラブルな社会・市場モデリングのための厳密な合成人口
- Authors: Thierry Petit, Arnault Pachot,
- Abstract要約: ターゲット統計を高精度に再現する合成集団を生成するための制約プログラミングフレームワークを提案する。
本研究は, 人口統計資料へのアプローチを検証するとともに, 下流分析における分布偏差の影響について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a constraint-programming framework for generating synthetic populations that reproduce target statistics with high precision while enforcing full individual consistency. Unlike data-driven approaches that infer distributions from samples, our method directly encodes aggregated statistics and structural relations, enabling exact control of demographic profiles without requiring any microdata. We validate the approach on official demographic sources and study the impact of distributional deviations on downstream analyses. This work is conducted within the Pollitics project developed by Emotia, where synthetic populations can be queried through large language models to model societal behaviors, explore market and policy scenarios, and provide reproducible decision-grade insights without personal data.
- Abstract(参考訳): 本研究では,個別の一貫性を保ちつつ,高い精度で目標統計を再現する合成集団を生成するための制約プログラミングフレームワークを提案する。
サンプルから分布を推定するデータ駆動型アプローチとは異なり,本手法は統計と構造関係を直接符号化し,マイクロデータを必要としない人口動態の正確な制御を可能にする。
人口統計資料へのアプローチを検証し、下流分析における分布偏差の影響について検討する。
この研究は、エモティアが開発したポリティクスプロジェクト(Pollytics project)の中で行われ、大規模な言語モデルを通して、社会行動のモデル化、市場と政策シナリオの探索、個人データなしで再現可能な意思決定グレードの洞察を提供することができる。
関連論文リスト
- Valid Inference with Imperfect Synthetic Data [39.10587411316875]
モーメントの一般化法に基づく新しい推定器を提案する。
合成データのモーメント残差と実データのモーメント間の相互作用は、対象パラメータの推定を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2025-08-08T18:32:52Z) - A Survey on Tabular Data Generation: Utility, Alignment, Fidelity, Privacy, and Beyond [53.56796220109518]
異なるユースケースは、実際に有用な異なる要件を満たすために合成データを要求する。
合成データの実用性、合成データのドメイン固有の知識との整合性、実際のデータ分布と比較しての合成データ分布の統計的忠実度、プライバシ保護能力の4つの要件をレビューする。
今後の分野の方向性と、現在の評価方法を改善する機会について論じる。
論文 参考訳(メタデータ) (2025-03-07T21:47:11Z) - Distributionally Robust Clustered Federated Learning: A Case Study in Healthcare [9.433126190164224]
CS-RCFL(Cross-silo Robust Clustered Federated Learning)と呼ばれる新しいアルゴリズムを導入する。
我々は,各クライアントの経験的分布の周囲にあいまいな集合を構築し,ローカルデータの分布シフトをキャプチャする。
そこで我々は,モデルに依存しない整数分数プログラムを提案し,クライアントの連立への最適分布的ロバストなクラスタリングを決定する。
論文 参考訳(メタデータ) (2024-10-09T16:25:01Z) - A Deep Generative Framework for Joint Households and Individuals Population Synthesis [0.562479170374811]
世帯・個人・個人・個人関係を持つ合成集団を創出するための深い生成枠組みを提案する。
米国デラウェア州での申請の結果は、生成された家庭内レコードのリアリズムを確実にする能力を示している。
論文 参考訳(メタデータ) (2024-06-30T23:01:58Z) - Quantifying Distribution Shifts and Uncertainties for Enhanced Model Robustness in Machine Learning Applications [0.0]
本研究では,合成データを用いたモデル適応と一般化について検討する。
我々は、データ類似性を評価するために、Kullback-Leiblerの発散、Jensen-Shannon距離、Mahalanobis距離などの量的尺度を用いる。
本研究は,マハラノビス距離などの統計指標を用いて,モデル予測が低誤差の「補間体制」内にあるか,あるいは高誤差の「補間体制」が分布変化とモデル不確実性を評価するための補完的手法を提供することを示唆している。
論文 参考訳(メタデータ) (2024-05-03T10:05:31Z) - Leveraging Prototypical Representations for Mitigating Social Bias without Demographic Information [50.29934517930506]
DAFairは、言語モデルにおける社会的バイアスに対処する新しいアプローチである。
偏見を緩和するために、原型的人口統計テキストを活用し、微調整プロセス中に正規化用語を取り入れる。
論文 参考訳(メタデータ) (2024-03-14T15:58:36Z) - Copula-based transferable models for synthetic population generation [1.370096215615823]
集団合成は、マイクロエージェントの標的集団の合成的かつ現実的な表現を生成することを含む。
従来の手法は、しばしばターゲットのサンプルに依存し、高いコストと小さなサンプルサイズのために制限に直面している。
本研究では,実験的辺縁分布のみが知られている対象個体群を対象とした合成データを生成するためのコプラに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-17T23:58:14Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - On synthetic data generation for anomaly detection in complex social
networks [1.1602089225841632]
本稿では,ミッションクリティカルな応用のための合成データ生成の実現可能性について検討する。
特に,複雑なソーシャルネットワークにおける異常な活動のデータを生成可能な生成モデルの開発が求められている。
論文 参考訳(メタデータ) (2020-10-25T03:53:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。