論文の概要: Simultaneous Enhancement and Noise Suppression under Complex Illumination Conditions
- arxiv url: http://arxiv.org/abs/2512.08378v1
- Date: Tue, 09 Dec 2025 09:04:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-10 22:28:07.888283
- Title: Simultaneous Enhancement and Noise Suppression under Complex Illumination Conditions
- Title(参考訳): 複雑な照明条件下での同時促進と騒音抑制
- Authors: Jing Tao, You Li, Banglei Guan, Yang Shang, Qifeng Yu,
- Abstract要約: 複雑な照明条件下での同時拡張と騒音抑制のための新しい枠組みを提案する。
提案手法は,実践的応用から得られた実世界のデータセットを用いて評価する。
- 参考スコア(独自算出の注目度): 18.76552485320789
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Under challenging light conditions, captured images often suffer from various degradations, leading to a decline in the performance of vision-based applications. Although numerous methods have been proposed to enhance image quality, they either significantly amplify inherent noise or are only effective under specific illumination conditions. To address these issues, we propose a novel framework for simultaneous enhancement and noise suppression under complex illumination conditions. Firstly, a gradient-domain weighted guided filter (GDWGIF) is employed to accurately estimate illumination and improve image quality. Next, the Retinex model is applied to decompose the captured image into separate illumination and reflection layers. These layers undergo parallel processing, with the illumination layer being corrected to optimize lighting conditions and the reflection layer enhanced to improve image quality. Finally, the dynamic range of the image is optimized through multi-exposure fusion and a linear stretching strategy. The proposed method is evaluated on real-world datasets obtained from practical applications. Experimental results demonstrate that our proposed method achieves better performance compared to state-of-the-art methods in both contrast enhancement and noise suppression.
- Abstract(参考訳): 難易度の高い光条件下では、キャプチャされた画像は様々な劣化に悩まされ、視覚ベースのアプリケーションの性能が低下する。
画質向上のための多くの手法が提案されているが、固有のノイズを著しく増幅するか、特定の照明条件下でのみ有効である。
これらの課題に対処するために,複雑な照明条件下での同時拡張と騒音抑制のための新しい枠組みを提案する。
まず、勾配領域重み付きガイドフィルタ(GDWGIF)を用いて、照明を正確に推定し、画質を向上させる。
次に、Retinexモデルを適用して、キャプチャした画像を別の照明層と反射層に分解する。
これらの層は並列処理され、照明条件を最適化するために照明層が修正され、反射層は画質を向上させるために強化される。
最後に、画像のダイナミックレンジをマルチ露光融合と線形ストレッチ戦略により最適化する。
提案手法は,実践的応用から得られた実世界のデータセットを用いて評価する。
実験結果から,提案手法はコントラスト強調法とノイズ抑圧法の両方において,最先端の手法と比較して優れた性能が得られることが示された。
関連論文リスト
- LightQANet: Quantized and Adaptive Feature Learning for Low-Light Image Enhancement [65.06462316546806]
低照度画像強調は、高品質な色とテクスチャを維持しながら照明を改善することを目的としている。
既存の手法では、低照度条件下での画素レベルの情報劣化により、信頼性の高い特徴表現の抽出に失敗することが多い。
低照度向上のための量子化・適応型特徴学習を実現する新しいフレームワークLightQANetを提案する。
論文 参考訳(メタデータ) (2025-10-16T14:54:42Z) - LUMINA-Net: Low-light Upgrade through Multi-stage Illumination and Noise Adaptation Network for Image Enhancement [26.585985828583304]
低照度画像強調(LLIE)は、低照度条件下で撮影された画像の視覚的忠実度を高めることを目的としたコンピュータビジョンにおける重要な課題である。
LUMINA-Netは,多段照明と反射モジュールを統合することで,低照度画像ペアから適応的な事前学習を行う,教師なしのディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2025-02-21T03:37:58Z) - Inhomogeneous illumination image enhancement under ex-tremely low visibility condition [3.534798835599242]
濃霧を通した画像は、物体の検出や認識の曖昧化といったアプリケーションに不可欠な視覚情報を欠いているため、従来の画像処理手法を妨げている。
本稿では,構造微分・積分フィルタ(F)に基づく背景照明を適応的にフィルタし,信号情報のみを向上させる手法を提案する。
提案手法は, 極めて低視認性条件下で信号の明瞭度を著しく向上し, 既存の技術よりも優れており, 深部霧画像への応用に大きく貢献することを示した。
論文 参考訳(メタデータ) (2024-04-26T16:09:42Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
自然色を維持しながら低照度画像を強調することは、カメラ処理のバリエーションによって難しい問題である。
そこで我々はDimmaを提案する。Dimmaは、画像対の小さなセットを利用して、任意のカメラと整合する半教師付きアプローチである。
そこで我々は,照明の違いに基づいて,シーンの歪み色を生成する畳み込み混合密度ネットワークを導入することで実現した。
論文 参考訳(メタデータ) (2023-10-14T17:59:46Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - Low-Light Maritime Image Enhancement with Regularized Illumination
Optimization and Deep Noise Suppression [5.401654133604235]
本稿では,照明の正規化と雑音抑圧による低照度画像の高精細化を提案する。
人工海事画像と現実海事画像の総合的な実験を行い,提案手法と最先端画像との比較を行った。
論文 参考訳(メタデータ) (2020-08-09T17:05:23Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z) - Unsupervised Low-light Image Enhancement with Decoupled Networks [103.74355338972123]
我々は、実世界の低照度画像を教師なしで拡張する2段階のGANベースのフレームワークを学習する。
提案手法は,照度向上と雑音低減の両面から,最先端の教師なし画像強調法より優れる。
論文 参考訳(メタデータ) (2020-05-06T13:37:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。