論文の概要: C-DIRA: Computationally Efficient Dynamic ROI Routing and Domain-Invariant Adversarial Learning for Lightweight Driver Behavior Recognition
- arxiv url: http://arxiv.org/abs/2512.08647v2
- Date: Wed, 10 Dec 2025 02:33:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-11 15:14:53.225938
- Title: C-DIRA: Computationally Efficient Dynamic ROI Routing and Domain-Invariant Adversarial Learning for Lightweight Driver Behavior Recognition
- Title(参考訳): C-DIRA:軽量ドライバ行動認識のための計算効率の良い動的ROIルーティングとドメイン不変逆学習
- Authors: Keito Inoshita,
- Abstract要約: 車両内カメラを用いた運転注意行動認識では,エッジデバイス上でのリアルタイム推論が要求される。
軽量モデルは細かな振る舞いの手がかりを捉えるのに失敗することが多く、その結果、目に見えないドライバーや様々な条件下での性能が低下する。
本稿では,軽量ドライバ動作認識のための関心ルーティングの動的領域とドメイン不変のAdrial Learningを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driver distraction behavior recognition using in-vehicle cameras demands real-time inference on edge devices. However, lightweight models often fail to capture fine-grained behavioral cues, resulting in reduced performance on unseen drivers or under varying conditions. ROI-based methods also increase computational cost, making it difficult to balance efficiency and accuracy. This work addresses the need for a lightweight architecture that overcomes these constraints. We propose Computationally efficient Dynamic region of Interest Routing and domain-invariant Adversarial learning for lightweight driver behavior recognition (C-DIRA). The framework combines saliency-driven Top-K ROI pooling and fused classification for local feature extraction and integration. Dynamic ROI routing enables selective computation by applying ROI inference only to high difficulty data samples. Moreover, pseudo-domain labeling and adversarial learning are used to learn domain-invariant features robust to driver and background variation. Experiments on the State Farm Distracted Driver Detection Dataset show that C-DIRA maintains high accuracy with significantly fewer FLOPs and lower latency than prior lightweight models. It also demonstrates robustness under visual degradation such as blur and low-light, and stable performance across unseen domains. These results confirm C-DIRA's effectiveness in achieving compactness, efficiency, and generalization.
- Abstract(参考訳): 車両内カメラを用いた運転注意行動認識では,エッジデバイス上でのリアルタイム推論が要求される。
しかし、軽量モデルは細かな振る舞いの手がかりを捉えることができず、その結果、目に見えないドライバーや様々な条件下での性能が低下する。
ROIベースの手法は計算コストを増大させ、効率と精度のバランスをとるのが難しくなる。
この作業は、これらの制約を克服する軽量アーキテクチャの必要性に対処する。
本稿では,軽量ドライバ動作認識(C-DIRA)のための,関心ルーティングの計算効率の高い動的領域とドメイン不変の逆数学習を提案する。
このフレームワークは、サリエンシ駆動のTop-K ROIプーリングと、局所的な特徴抽出と統合のための融合した分類を組み合わせたものだ。
動的ROIルーティングは、ROI推論を高難易度データサンプルにのみ適用することで、選択的計算を可能にする。
さらに、擬似ドメインラベリングと逆学習を用いて、運転者や背景の変化に対して堅牢なドメイン不変の特徴を学習する。
State Farm Distracted Driver Detection Datasetの実験によると、C-DIRAはFLOPをはるかに少なく、従来の軽量モデルよりもレイテンシが低い精度を維持している。
また、ぼやけや低照度といった視覚的劣化の下での堅牢性や、目に見えない領域間での安定したパフォーマンスも示している。
これらの結果から, C-DIRAのコンパクト性, 効率, 一般化における有効性が確認された。
関連論文リスト
- Registration is a Powerful Rotation-Invariance Learner for 3D Anomaly Detection [64.0168648353038]
ポイントクラウドデータにおける3次元異常検出は、高い信頼性で構造欠陥を特定することを目的として、産業品質管理に不可欠である。
現在のメモリバンクベースの手法は、しばしば一貫性のない特徴変換と限定的な識別能力に悩まされる。
本稿では、ポイントクラウド登録とメモリベース異常検出の目的を統合した、登録による回転不変の特徴抽出フレームワークを提案する。
論文 参考訳(メタデータ) (2025-10-19T14:56:38Z) - Spatiotemporal Attention Learning Framework for Event-Driven Object Recognition [1.0445957451908694]
イベントベースの視覚センサは、位置、極性、情報を含むスパースイベントストリームとして、局所ピクセルレベルの強度変化をキャプチャする。
本稿では、CBAM(Contemporalal Block Attention Module)により強化されたVARGGネットワークを利用した、イベントベースのオブジェクト認識のための新しい学習フレームワークを提案する。
提案手法は,従来のVGGモデルと比較してパラメータ数を2.3%削減しつつ,最先端のResNet手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2025-04-01T02:37:54Z) - Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
本稿では、シーンを駆動するための新しい単一ステージオブジェクト検出フレームワークであるFast-COSを紹介する。
RAViTはImageNet-1Kデータセットで81.4%のTop-1精度を達成した。
主要なモデルの効率を上回り、最大75.9%のGPU推論速度とエッジデバイスでの1.38のスループットを提供する。
論文 参考訳(メタデータ) (2025-02-11T09:54:09Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - DeepLocalization: Using change point detection for Temporal Action Localization [2.4502578110136946]
DeepLocalizationは、ドライバーの行動を監視するために明示的に調整されたアクションのリアルタイムローカライゼーションのために考案された革新的なフレームワークである。
我々の戦略は、ビデオ大言語モデル(Video Large Language Model, Video-LLM)と並行して、グラフベースの変更点検出を時間内のピンポイント行動に活用し、アクティビティを正確に分類する、という2つのアプローチを採用している。
論文 参考訳(メタデータ) (2024-04-18T15:25:59Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Adaptable and Interpretable Framework for Novelty Detection in Real-Time
IoT Systems [0.609170287691728]
RAIDアルゴリズムは、データドリフトやモデル開発中に考慮されない変更点などの非定常効果に適応する。
RAIDアルゴリズムは、既存のプロセス自動化インフラストラクチャの変更を必要としないため、異なるドメインにまたがって高度にデプロイできる。
論文 参考訳(メタデータ) (2023-04-06T09:16:37Z) - Learning to Generate Content-Aware Dynamic Detectors [62.74209921174237]
サンプル適応型モデルアーキテクチャを自動的に生成する効率的な検出器の設計を新たに導入する。
動的ルーティングの学習を導くために、オブジェクト検出に適したコースツーファインの成層図を紹介します。
MS-COCOデータセットの実験により、CADDetはバニラルーティングに比べて10%少ないFLOPで1.8以上のmAPを達成することが示された。
論文 参考訳(メタデータ) (2020-12-08T08:05:20Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
畳み込みニューラルネットワークは,計算オーバーヘッドが大きいにもかかわらず,コンピュータビジョンタスクの実行において大きな成功を収めている。
構造的(チャネル)プルーニングは、通常、ネットワーク構造を保ちながらモデルの冗長性を低減するために適用される。
既存の構造化プルーニング法では、手作りのルールが必要であり、これは大きなプルーニング空間に繋がる可能性がある。
論文 参考訳(メタデータ) (2020-11-04T07:43:01Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Learning Navigation Costs from Demonstration in Partially Observable
Environments [24.457042947946025]
本稿では、未知の部分観測可能な環境における安全かつ効率的な自律ナビゲーションを実現するために、逆強化学習(IRL)に焦点を当てる。
本研究では, 確率的占有エンコーダと, 占有特性に繰り返し依存するコストエンコーダの2つの部分からなるコスト関数表現を開発する。
本モデルは,ロボットナビゲーションタスクにおけるベースラインIRLアルゴリズムの精度を上回り,トレーニングとテストタイム推論の効率を大幅に向上させる。
論文 参考訳(メタデータ) (2020-02-26T17:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。