論文の概要: A 0.8395-approximation algorithm for the EPR problem
- arxiv url: http://arxiv.org/abs/2512.09896v1
- Date: Wed, 10 Dec 2025 18:25:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-11 15:14:53.633652
- Title: A 0.8395-approximation algorithm for the EPR problem
- Title(参考訳): EPR問題に対する0.8395近似アルゴリズム
- Authors: Anuj Apte, Eunou Lee, Kunal Marwaha, Ojas Parekh, Lennart Sinjorgo, James Sud,
- Abstract要約: EPRハミルトニアンに対して効率の良い0.8395近似アルゴリズムを提案する。
我々の改良は、星グラフに束縛された新しい非線形モノガミー・オブ・エンタングルメントと、浅い量子回路の洗練されたパラメータ化による。
- 参考スコア(独自算出の注目度): 0.13135750017147135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We give an efficient 0.8395-approximation algorithm for the EPR Hamiltonian. Our improvement comes from a new nonlinear monogamy-of-entanglement bound on star graphs and a refined parameterization of a shallow quantum circuit from previous works. We also prove limitations showing that current methods cannot achieve substantially better approximation ratios, indicating that further progress will require fundamentally new techniques.
- Abstract(参考訳): EPRハミルトニアンに対して効率の良い0.8395近似アルゴリズムを提案する。
我々の改良は、星グラフに束縛された新しい非線形モノガミー・オブ・エンタングルメントと、以前の研究から浅い量子回路の洗練されたパラメータ化によるものである。
また、現在の手法では近似比が大幅に向上できないことを示し、さらなる進歩には根本的に新しい技術が必要であることを示す。
関連論文リスト
- A Triple-Inertial Accelerated Alternating Optimization Method for Deep Learning Training [3.246129789918632]
勾配降下法(SGD)アルゴリズムは、ディープラーニングモデルのトレーニングにおいて顕著な成功を収めた。
モデルトレーニングの有望な代替手段として、交代最小化(AM)メソッドが登場した。
本稿では,ニューラルネットワークトレーニングのための新しいTriple-Inertial Accelerated Alternating Minimization(TIAM)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-11T14:42:17Z) - Incremental Quasi-Newton Methods with Faster Superlinear Convergence
Rates [50.36933471975506]
各成分関数が強く凸であり、リプシッツ連続勾配とヘシアンを持つ有限和最適化問題を考える。
最近提案されたインクリメンタル準ニュートン法は、BFGSの更新に基づいて、局所的な超線形収束率を達成する。
本稿では、対称ランク1更新をインクリメンタルフレームワークに組み込むことにより、より効率的な準ニュートン法を提案する。
論文 参考訳(メタデータ) (2024-02-04T05:54:51Z) - A relaxed proximal gradient descent algorithm for convergent
plug-and-play with proximal denoiser [6.2484576862659065]
本稿では,新しいコンバーゼントなPlug-and-fidelity Descent (Play)アルゴリズムを提案する。
このアルゴリズムは、より広い範囲の通常の凸化パラメータに収束し、画像のより正確な復元を可能にする。
論文 参考訳(メタデータ) (2023-01-31T16:11:47Z) - Uniform-PAC Bounds for Reinforcement Learning with Linear Function
Approximation [92.3161051419884]
線形関数近似を用いた強化学習について検討する。
既存のアルゴリズムは、高い確率的後悔と/またはおよそ正当性(PAC)サンプルの複雑さの保証しか持たない。
我々はFLUTEと呼ばれる新しいアルゴリズムを提案し、高い確率で最適ポリシーへの均一PAC収束を享受する。
論文 参考訳(メタデータ) (2021-06-22T08:48:56Z) - Inertial Proximal Deep Learning Alternating Minimization for Efficient
Neutral Network Training [16.165369437324266]
この研究は、有名な慣性手法であるiPDLAMによって改良されたDLAMを開発し、電流と最後の繰り返しの線形化によって点を予測する。
実世界のデータセットの数値計算結果を報告し,提案アルゴリズムの有効性を実証した。
論文 参考訳(メタデータ) (2021-01-30T16:40:08Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
平均報酬MDPの関数近似によるオフポリシ政策評価を検討する。
ブートストラップは必要であり、オフポリシ学習とFAと一緒に、致命的なトライアドをもたらす。
そこで本研究では,勾配型tdアルゴリズムの成功を再現する2つの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-08T00:43:04Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Better Parameter-free Stochastic Optimization with ODE Updates for
Coin-Betting [31.60239268539764]
PFSGDアルゴリズムは最適理論性能を達成しながら、学習速度の設定を必要としない。
そこで本稿では, トランク型モデル上での連続時間Coin-Bettingに基づく新しいパラメータフリーアルゴリズムにより, 経験的ギャップを埋める。
この新しいパラメータフリーアルゴリズムは「最良のデフォルト」学習率でアルゴリズムを上回り、チューニングの必要なく微調整されたベースラインの性能とほぼ一致していることを示す。
論文 参考訳(メタデータ) (2020-06-12T23:10:25Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。