論文の概要: LGAN: An Efficient High-Order Graph Neural Network via the Line Graph Aggregation
- arxiv url: http://arxiv.org/abs/2512.10735v1
- Date: Thu, 11 Dec 2025 15:23:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-12-12 16:15:42.441028
- Title: LGAN: An Efficient High-Order Graph Neural Network via the Line Graph Aggregation
- Title(参考訳): LGAN: ライングラフアグリゲーションによる高次グラフニューラルネットワーク
- Authors: Lin Du, Lu Bai, Jincheng Li, Lixin Cui, Hangyuan Du, Lichi Zhang, Yuting Chen, Zhao Li,
- Abstract要約: グラフ集約ネットワーク(LGAN, Graph Aggregation Network)を提案する。
理論的には、LGANは2-WLよりも高い表現力を持つ。
ベンチマークに関する実証的な評価では、LGANは最先端のk-WLベースのGNNよりも優れており、より優れた解釈性を提供している。
- 参考スコア(独自算出の注目度): 12.813630209382426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as a dominant paradigm for graph classification. Specifically, most existing GNNs mainly rely on the message passing strategy between neighbor nodes, where the expressivity is limited by the 1-dimensional Weisfeiler-Lehman (1-WL) test. Although a number of k-WL-based GNNs have been proposed to overcome this limitation, their computational cost increases rapidly with k, significantly restricting the practical applicability. Moreover, since the k-WL models mainly operate on node tuples, these k-WL-based GNNs cannot retain fine-grained node- or edge-level semantics required by attribution methods (e.g., Integrated Gradients), leading to the less interpretable problem. To overcome the above shortcomings, in this paper, we propose a novel Line Graph Aggregation Network (LGAN), that constructs a line graph from the induced subgraph centered at each node to perform the higher-order aggregation. We theoretically prove that the LGAN not only possesses the greater expressive power than the 2-WL under injective aggregation assumptions, but also has lower time complexity. Empirical evaluations on benchmarks demonstrate that the LGAN outperforms state-of-the-art k-WL-based GNNs, while offering better interpretability.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,グラフ分類の主流パラダイムとして浮上している。
具体的には、ほとんどの既存のGNNは、隣接するノード間のメッセージパッシング戦略に依存しており、1次元Weisfeiler-Lehman (1-WL) テストによって表現性が制限されている。
この制限を克服するために、多くのk-WLベースのGNNが提案されているが、その計算コストはkとともに急速に増加し、実用性を大幅に制限している。
さらに、k-WLモデルは、主にノードタプルで動作するため、これらのk-WLベースのGNNは、属性メソッド(例えば、統合グラディエント)が必要とする細粒度のノードレベルやエッジレベルのセマンティクスを保持することができず、解釈しにくい問題を引き起こす。
上記の欠点を克服するため,本論文では,各ノード中心の誘導サブグラフから線グラフを構築し,高次アグリゲーションを行うLine Graph Aggregation Network (LGAN)を提案する。
理論的には、LGANは2-WLよりも高い表現力を持つだけでなく、時間の複雑さも低いことを証明している。
ベンチマークに関する実証的な評価では、LGANは最先端のk-WLベースのGNNよりも優れており、より優れた解釈性を提供している。
関連論文リスト
- Rethinking GNN Expressive Power from a Distributed Computational Model Perspective [29.47675861430167]
事前処理と後処理を明確に指定した修正 CONGEST モデルなど,明確に定義された計算モデルを使用することによって,GNN 表現性を分析するためのより健全なフレームワークが提供される,と我々は主張する。
制約のない事前処理を許可したり、外部に計算された機能を組み込んだりすることは、これらの事前計算によって表現性が向上し、時には問題を引き起こす可能性があることを示す。
これらの否定的な結果にもかかわらず、計算モデルの観点から仮想ノードとエッジの効果を特徴付ける肯定的な結果も提示する。
論文 参考訳(メタデータ) (2024-10-02T08:01:50Z) - A Complete Expressiveness Hierarchy for Subgraph GNNs via Subgraph
Weisfeiler-Lehman Tests [30.558563815430418]
GNN(Subgraph Neural Network)は、表現型グラフニューラルネットワーク(GNN)を開発するための重要な方向として登場した。
本稿では,WIP(Subgraph Weisfeiler-Lehman Tests)のレンズを用いた一般ノードベースサブグラフGNNの系統的研究を行う。
ノードベースの部分グラフ GNN が 6 つのSWL 等価クラスのうちの 1 つに該当することを証明し、その中で $mathsfSSWL$ が最大表現力を達成する。
論文 参考訳(メタデータ) (2023-02-14T14:42:54Z) - A Practical, Progressively-Expressive GNN [27.267362661067285]
近年,メッセージパッシングニューラルネットワーク(MPNN)がグラフニューラルネットワーク(GNN)の主流となっている。
MPNNは、グラフ同型テストのフレームワークにおいてグラフを区別する1次元のWeisfeiler-Leman (1-WL)テストと同じくらい強力である。
我々は,k-tuples ノードから =c 連結成分上で定義された=k ノードの集合へ移動することで,k-WL から k-WL への複雑性を大幅に低減した (k, c)(=)-SETWL 階層を提案する。
論文 参考訳(メタデータ) (2022-10-18T01:27:21Z) - Representation Power of Graph Neural Networks: Improved Expressivity via
Algebraic Analysis [124.97061497512804]
標準グラフニューラルネットワーク (GNN) はWeisfeiler-Lehman (WL) アルゴリズムよりも差別的な表現を生成する。
また、白い入力を持つ単純な畳み込みアーキテクチャは、グラフの閉経路をカウントする同変の特徴を生じさせることを示した。
論文 参考訳(メタデータ) (2022-05-19T18:40:25Z) - Theoretically Improving Graph Neural Networks via Anonymous Walk Graph
Kernels [25.736529232578178]
グラフニューラルネットワーク(GNN)は、グラフマイニングで大きな成功を収めました。
一般的なGNNとしてMPGNNは、多くのグラフのサブ構造を識別、検出、カウントできないことが理論的に示されている。
理論的にはグラフ構造を区別する能力の強いGNNモデルであるGSKNを提案する。
論文 参考訳(メタデータ) (2021-04-07T08:50:34Z) - Counting Substructures with Higher-Order Graph Neural Networks:
Possibility and Impossibility Results [58.277290855841976]
グラフニューラルネットワーク(GNN)の計算コストと表現力のトレードオフについて検討する。
新しいモデルでは、$k$のサブグラフをカウントでき、低次GNNの既知の制限を克服できることを示す。
いくつかの場合において、提案アルゴリズムは既存の高階$k$-GNNに比べて計算量を大幅に削減することができる。
論文 参考訳(メタデータ) (2020-12-06T03:42:54Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
グラフニューラルネットワーク(GNN)のロバスト性および一般化性能を向上させるために,パラメータ化トポロジカルデノイングネットワークであるPTDNetを提案する。
PTDNetは、パラメータ化されたネットワークでスパーシファイドグラフ内のエッジ数をペナル化することで、タスク非関連エッジを創出する。
PTDNetはGNNの性能を著しく向上させ,さらにノイズの多いデータセットでは性能が向上することを示す。
論文 参考訳(メタデータ) (2020-11-13T18:53:21Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
グラフサブストラクチャネットワーク(GSN)は,サブストラクチャエンコーディングに基づくトポロジ的に認識可能なメッセージパッシング方式である。
Wesfeiler-Leman (WL) グラフ同型テストよりも厳密に表現可能であることを示す。
グラフ分類と回帰タスクについて広範囲に評価を行い、様々な実世界の環境において最先端の結果を得る。
論文 参考訳(メタデータ) (2020-06-16T15:30:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。